Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10955-023-03220-5 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider a one-dimensional spin model with the long-range random Hamiltonian given by H[sigma]=-1/2 & sum;(x not equal y)J(x,y)sigma(x)sigma(y)/|x-y|(alpha)0+(alpha)x, y. The randomness is considered in both the pairwise interaction J(x,y) and in its decaying parameter with slowest value alpha(0) plus a non-negative random variable alpha(x, y). We prove the loss of stability at alpha(0)=1/2. We also prove the existence of the free energy at the thermodynamic limit when alpha(0)>1/2. Furthermore, we show uniqueness of the equilibrium state for alpha(0)>3/2 in the strong sense.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | LITTIN-CURINAO, JORGE ANDRES | Hombre |
Universidad Católica del Norte - Chile
|
| 2 | MALDONADO-LLANCAMAN, CESAR | Hombre |
IPICYT - México
Instituto Potosino de Investigación Científica y Tecnológica, A.C. - México |
| Fuente |
|---|
| Conahcyt |
| Ncleo Anlisis Causal Emprico, UCN-VRIDT |
| Consejo Nacional de Humanidades, Ciencias y Tecnologías |
| Agradecimiento |
|---|
| The authors thank the three anonymous reviewers of an earlier version of this work for their careful reading, suggestions and corrections that highly improve a previous version of this paper. And also thank the two more referees of this new version for their comments and corrections. |
| JL acknowledges the partial support of Núcleo Análisis Causal Empírico UCN-VRDIT 096-2022, CM was supported by the Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT México) through the Ciencia Básica Project No. A1-S-15528. |