Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



LooplessFluxSampler: an efficient toolbox for sampling the loopless flux solution space of metabolic models
Indexado
WoS WOS:001135227400003
Scopus SCOPUS_ID:85181231423
DOI 10.1186/S12859-023-05616-2
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



BackgroundUniform random sampling of mass-balanced flux solutions offers an unbiased appraisal of the capabilities of metabolic networks. Unfortunately, it is impossible to avoid thermodynamically infeasible loops in flux samples when using convex samplers on large metabolic models. Current strategies for randomly sampling the non-convex loopless flux space display limited efficiency and lack theoretical guarantees.ResultsHere, we present LooplessFluxSampler, an efficient algorithm for exploring the loopless mass-balanced flux solution space of metabolic models, based on an Adaptive Directions Sampling on a Box (ADSB) algorithm. ADSB is rooted in the general Adaptive Direction Sampling (ADS) framework, specifically the Parallel ADS, for which theoretical convergence and irreducibility results are available for sampling from arbitrary distributions. By sampling directions that adapt to the target distribution, ADSB traverses more efficiently the sample space achieving faster mixing than other methods. Importantly, the presented algorithm is guaranteed to target the uniform distribution over convex regions, and it provably converges on the latter distribution over more general (non-convex) regions provided the sample can have full support.ConclusionsLooplessFluxSampler enables scalable statistical inference of the loopless mass-balanced solution space of large metabolic models. Grounded in a theoretically sound framework, this toolbox provides not only efficient but also reliable results for exploring the properties of the almost surely non-convex loopless flux space. Finally, LooplessFluxSampler includes a Markov Chain diagnostics suite for assessing the quality of the final sample and the performance of the algorithm.

Revista



Revista ISSN
Bmc Bioinformatics 1471-2105

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biotechnology & Applied Microbiology
Mathematical & Computational Biology
Biochemical Research Methods
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Saa, Pedro A. Hombre Pontificia Universidad Católica de Chile - Chile
2 Zapararte, Sebastian Hombre Pontificia Universidad Católica de Chile - Chile
3 Drovandi, Christopher C. - Queensland Univ Technol - Australia
Queensland University of Technology - Australia
4 Nielsen, Lars Keld Hombre UNIV QUEENSLAND - Australia
Tech Univ Denmark - Dinamarca
The University of Queensland - Australia
Technical University of Denmark - Dinamarca

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Australian Research Council
Novo Nordisk Fonden
National Center for Artificial Intelligence CENIA
Queensland Cyber Infrastructure Foundation
Open Seed Fund UC-UQ

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was conducted using computational resources from the Queensland Cyber Infrastructure Foundation (http://www.qcif.edu.au).
This research was conducted using computational resources from the Queensland Cyber Infrastructure Foundation (http://www.qcif.edu.au).
This research was conducted using computational resources from the Queensland Cyber Infrastructure Foundation (http://www.qcif.edu.au).

Muestra la fuente de financiamiento declarada en la publicación.