Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



"Determining the efficacy of a machine learning model for measuring periodontal bone loss"
Indexado
WoS WOS:001144644900003
Scopus SCOPUS_ID:85182442247
DOI 10.1186/S12903-023-03819-W
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



BackgroundConsidering the prevalence of Periodontitis, new tools to help improve its diagnostic workflow could be beneficial. Machine Learning (ML) models have already been used in dentistry to automate radiographic analysis.AimsTo determine the efficacy of an ML model for automatically measuring Periodontal Bone Loss (PBL) in panoramic radiographs by comparing it to dentists.MethodsA dataset of 2010 images with and without PBL was segmented using Label Studio. The dataset was split into n = 1970 images for building a training dataset and n = 40 images for building a testing dataset. We propose a model composed of three components. Firstly, statistical inference techniques find probability functions that best describe the segmented dataset. Secondly, Convolutional Neural Networks extract visual information from the training dataset. Thirdly, an algorithm calculates PBL as a percentage and classifies it in stages. Afterwards, a standardized test compared the model to two radiologists, two periodontists and one general dentist. The test was built using the testing dataset, 40 questions long, done in controlled conditions, with radiologists considered as ground truth. Presence or absence, percentage, and stage of PBL were asked, and time to answer the test was measured in seconds. Diagnostic indices, performance metrics and performance averages were calculated for each participant.ResultsThe model had an acceptable performance for diagnosing light to moderate PBL (weighted sensitivity 0.23, weighted F1-score 0.29) and was able to achieve real-time diagnosis. However, it proved incapable of diagnosing severe PBL (sensitivity, precision, and F1-score = 0).ConclusionsWe propose a Machine Learning model that automates the diagnosis of Periodontal Bone Loss in panoramic radiographs with acceptable performance.

Revista



Revista ISSN
Bmc Oral Health 1472-6831

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Dentistry, Oral Surgery & Medicine
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Mardini, Diego Cerda - Universidad de Los Andes, Chile - Chile
1 Cerda Mardini, Diego - Universidad de Los Andes, Chile - Chile
2 Mardini, Patricio Cerda - Universidad de Los Andes, Chile - Chile
MindsDB - Estados Unidos
2 Cerda Mardini, Patricio - Universidad de Los Andes, Chile - Chile
MindsDB - Estados Unidos
3 Iturriaga, Daniela Paz Vicuna - Universidad de Los Andes, Chile - Chile
3 Vicuña Iturriaga, Daniela Paz - Universidad de Los Andes, Chile - Chile
4 Borroto, Duniel Ricardo Ortuno - Universidad de Los Andes, Chile - Chile
4 Ortuño Borroto, Duniel Ricardo - Universidad de Los Andes, Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We would like to acknowledge and express our gratitude to both the patients whose radiographs were used and the dental professionals that participated in this study, as they helped create the scientific information necessary for developing this study.

Muestra la fuente de financiamiento declarada en la publicación.