Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/AGRICULTURE14010018 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In blueberry farming, accurately assessing maturity is critical to efficient harvesting. Deep Learning solutions, which are increasingly popular in this area, often undergo evaluation through metrics like mean average precision (mAP). However, these metrics may only partially capture the actual performance of the models, especially in settings with limited resources like those in agricultural drones or robots. To address this, our study evaluates Deep Learning models, such as YOLOv7, RT-DETR, and Mask-RCNN, for detecting and classifying blueberries. We perform these evaluations on both powerful computers and embedded systems. Using Type-Influence Detector Error (TIDE) analysis, we closely examine the accuracy of these models. Our research reveals that partial occlusions commonly cause errors, and optimizing these models for embedded devices can increase their speed without losing precision. This work improves the understanding of object detection models for blueberry detection and maturity estimation.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | AGUILERA-CARRASCO, CRISTHIAN ALEJANDRO | Mujer |
Universidad San Sebastián - Chile
Universidad del Bío Bío - Chile |
| 2 | Figueroa-Flores, Carola | Mujer |
Universidad del Bío Bío - Chile
|
| 3 | AGUILERA-CARRASCO, CRISTHIAN ALEJANDRO | Mujer |
Universidad San Sebastián - Chile
Universidad del Bío Bío - Chile |
| 4 | Navarrete, Cesar | - |
Universidad del Bío Bío - Chile
|
| Fuente |
|---|
| Fondo de Fomento al Desarrollo Científico y Tecnológico |
| National Research and Development Agency |