Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Predicting the concentration range of trace organic contaminants in recycled water using supervised classification
Indexado
WoS WOS:001153067700001
Scopus SCOPUS_ID:85181841463
DOI 10.1016/J.JWPE.2023.104709
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Trace Organic Contaminants (TrOCs) have evidence for many health and environmental issues. Frequent monitoring of TrOC concentration is a time-consuming and costly process, which cannot be achieved easily. Identifying surrogate markers for these contaminants is a practical solution to monitor and ensure water quality. However, this topic is seldom explored in previous literature. This study aimed to find surrogate markers to predict concentration class (i.e., three classes: low concentration, medium concentration, high concentration) for a set of widely used pharmaceutical and personal care product TrOCs (e.g., Fluoxetine, Primidone, Saccharin, Sucralose to name a few) in recycled water from Melbourne Eastern Treatment Plant (ETP), Melbourne, Australia. For this purpose, three popular supervised learning classification algorithms namely Naive Bayes, Random Forest and Support Vector Machines were utilized. Physicochemical parameters colour, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) were found to be the top three predictive features for the majority of the investigated TrOCs. UV Transmittance (UVT) and the total amount of suspended solids (TSS) were the next frequent features. The Random Forest model resulted in the highest classification accuracy (>= 73 %) for the majority of compounds. This paper presents evidence that with the acquired intelligence of supervised machine learning, the concentration range of hard to measure TrOCs in water can be predicted from a handful of low-cost and easy-to-measure physicochemical parameters.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Chemical
Water Resources
Engineering, Environmental
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Farzanehsa, Mahshid S.Z. - Univ New South Wales - Australia
UNSW Sydney - Australia
2 Carvajal, Guido Hombre Universidad Nacional Andrés Bello - Chile
3 Mcdonald, James - Univ New South Wales - Australia
UNSW Sydney - Australia
4 Khan, Stuart J. Hombre Univ New South Wales - Australia
UNSW Sydney - Australia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Australian Research Council
Australian Research Council (ARC) Future Fellowships Program

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This study was supported by funding provided by the Australian Research Council (ARC) Future Fellowships Program, FT170100371.
This study was supported by funding provided by the Australian Research Council (ARC) Future Fellowships Program, FT170100371 .

Muestra la fuente de financiamiento declarada en la publicación.