Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Landslide displacement prediction by using Bayesian optimization–temporal convolutional networks
Indexado
WoS WOS:001156230700002
Scopus SCOPUS_ID:85184465770
DOI 10.1007/S11440-023-02205-8
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Landslides caused by typhoons and rainstorms frequently occur in the mountainous areas of southeastern China, with a complex mechanism of disaster generation. Therefore, establishing a prediction model for early warning against such landslides is of great theoretical and practical significance. In response to the current shortcomings in landslide displacement prediction models, considering the dynamic evolutionary characteristics of landslide physical mechanisms in the study area, a novel model based on Bayesian optimization-temporal convolutional networks was developed. The proposed model can automatically perform feature extraction on a dataset of complex multivariate time series, preventing leakage of future data during the training process. Simultaneously, it leverages Bayesian optimization to discover optimal hyperparameters within the model, thereby offering additional insights into the hyperparameter tuning process. Compared with recurrent neural networks, the proposed model with flexible receptive fields has faster training speed and parallel computing capability. Finally, we experimentally compared the performance of the proposed algorithm and other common algorithms by analyzing the monitoring data from the Yaoshan landslide disaster in Anxi County, Fujian Province, China. The results show that the proposed model yields the best prediction results in various prediction ranges.

Revista



Revista ISSN
Acta Geotechnica 1861-1125

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Geological
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Yang, Jian - Fuzhou Univ - China
Fuzhou University - China
2 Huang, Zhijie - Fuzhou Univ - China
Fuzhou University - China
3 Jian, Wenbin - Fuzhou Univ - China
Fuzhou University - China
4 Robledo, Luis F. - Universidad Nacional Andrés Bello - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Natural Science Foundation of China
NSFC-CONICYT

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors are grateful to the financial supports from National Natural Science Foundation of China (NSFC-CONICYT, U2005205; 41861134011). The original data and codes used in this study are available from the corresponding author upon reasonable request.
The authors are grateful to the financial supports from National Natural Science Foundation of China (NSFC-CONICYT, U2005205; 41861134011). The original data and codes used in this study are available from the corresponding author upon reasonable request.

Muestra la fuente de financiamiento declarada en la publicación.