Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Understanding inland fog and dew dynamics for assessing potential non-rainfall water use in the Atacama
Indexado
WoS WOS:001156821500001
Scopus SCOPUS_ID:85182551319
DOI 10.1016/J.JARIDENV.2024.105125
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In (semi-)arid regions, harvesting fog and dew can become a complementary solution to traditional water supply. In the Atacama region, a territory of key and water-dependent economic activities, both fog and dew are driven by the advection of marine moisture from the Pacific. Still, little is described regarding the dynamics and water potential of these events. In this study, we analyze the spatiotemporal variability of fog and dew in the Atacama Desert to assess the potential of non-rainfall atmospheric water harvesting. Our research strategy combines three methods to achieve a comprehensive understanding of these phenomena: a satellite-spatial analysis of fog and low cloud frequencies; a thermodynamic characterization of the fog cloud vertical structure; and an observational analysis of fog and dew water collection. Our findings reveal that fog is a regular phenomenon in the area, occurring from 3% to 20% of the year. We estimate that fog cloud reaches 50 km inland and up to similar to 1100 m ASL, covering a vast territory where it can be harvested. Fog and dew represent 72% and 28% of the total collected atmospheric water (similar to 0.2 L m(-2) day(-1)). Both fog and dew represent a complementary natural water source with multiple uses for local industries.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Ecology
Environmental Sciences
Scopus
Ecology
Ecology, Evolution, Behavior And Systematics
Earth Surface Processes
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Lobos-Roco, F. - Pontificia Universidad Católica de Chile - Chile
2 SUAREZ-VASQUEZ, FRANCISCO JAVIER Hombre Pontificia Universidad Católica de Chile - Chile
Centro de Desarrollo Urbano Sustentable CEDEUS - Chile
Ctr Excelencia Geotermia Andes CEGA - Chile
Centro de Excelencia en Geotermia de Los Andes - Chile
3 Aguirre-Correa, Francisca Mujer Pontificia Universidad Católica de Chile - Chile
4 Keim, Klaus - Pontificia Universidad Católica de Chile - Chile
5 Aguirre, I. - Univ Saskatchewan - Canadá
University of Saskatchewan - Canadá
6 VARGAS-GALVEZ, CRISTIAN ANTONIO Mujer Pontificia Universidad Católica de Chile - Chile
7 Abarca, F. Mujer Pontificia Universidad Católica de Chile - Chile
8 Ramirez, C. Mujer Pontificia Universidad Católica de Chile - Chile
9 ESCOBAR-HENRIQUEZ, RAUL GUILLERMO Hombre Pontificia Universidad Católica de Chile - Chile
10 OSSES-MCINTYRE, PABLO EUGENIO Hombre Pontificia Universidad Católica de Chile - Chile
11 DEL RIO-LOPEZ, CAMILO Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Centro de Desarrollo Urbano Sustentable
Centro de Excelencia en Geotermia de Los Andes
Chilean National Commission of Science and Technology

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by the Chilean National Commission of Science and Technology through ANID/FONDECYT/11200789. FS acknowledges the support from the Centro de Desarrollo Urbano Sustentable (CEDEUS-ANID/FONDAP/15110020) and from the Centro de Excelencia en Geotermia de los Andes (CEGA-ANID/FONDAP/15200001) . CdR and FS thanks the support from ANID/ATE/230006. We acknowledge the three anonymous reviewers and E. Fiorin for her English language editing.
The base of cloud fog (CB), understood as the altitude of the base of the stratocumulus (Sc) cloud, was obtained using the “Air Parcel Method” (Wetzel, 1990), following the methodology already applied by Lobos-Roco et al. (2018) at the Atacama Desert for the calculation of the lifting condensation level (LCL). This method assumes that an air parcel 100% mixes with the environment while lifting through the MBL, following the dry adiabatic until condensation. The transect stations work as a vertical tower when fog occurs, including two observation points spanning the MBL. The lowest observation point is a meteorological station located near the shoreline (∼1000 hPa); whereas the highest observation point is a station in the Coastal Cordillera (∼925 hPa), and serves as a monitoring point near the MBL top. To ensure the second observation point remains within the influence of the MBL, cloud base calculations are restricted to instances when FCL (an MBL cloud) is above this observation point (detected by satellites, section 2.2.1). This assumption is supported by studies in the Atacama region, which report cloud tops reaching up to 1200 m ASL, an elevation at which Lomas ecosystems are typically found (Cereceda et al., 2008; Koch et al., 2019). The average of both observation points represents the mean MBL condition. Therefore, this method enabled us to characterize the vertical profiles of the MBL in terms of specific humidity (q) and potential temperature (θ) (Fig. 1a). These variables allowed us to infer the height at which the air parcels, lifted from the surface (lower station of the transect), reach their condensation level (LCL). This level is determined by the pressure level at which the specific humidity equals the saturated specific humidity (q = qsat). Since advective fog is mainly composed of Sc clouds, which are boundary layer clouds, it is safe to assume that LCL ∼ CB. The details of this methodology can be found in Lobos-Roco et al.‘s recent work (2018).This research was funded by the Chilean National Commission of Science and Technology through ANID/FONDECYT/11200789. FS acknowledges the support from the Centro de Desarrollo Urbano Sustentable (CEDEUS - ANID/FONDAP/15110020) and from the Centro de Excelencia en Geotermia de los Andes (CEGA - ANID/FONDAP/15200001). CdR and FS thanks the support from ANID/ATE/230006. We acknowledge the three anonymous reviewers and E. Fiorin for her English language editing.
The base of cloud fog (CB), understood as the altitude of the base of the stratocumulus (Sc) cloud, was obtained using the “Air Parcel Method” (Wetzel, 1990), following the methodology already applied by Lobos-Roco et al. (2018) at the Atacama Desert for the calculation of the lifting condensation level (LCL). This method assumes that an air parcel 100% mixes with the environment while lifting through the MBL, following the dry adiabatic until condensation. The transect stations work as a vertical tower when fog occurs, including two observation points spanning the MBL. The lowest observation point is a meteorological station located near the shoreline (∼1000 hPa); whereas the highest observation point is a station in the Coastal Cordillera (∼925 hPa), and serves as a monitoring point near the MBL top. To ensure the second observation point remains within the influence of the MBL, cloud base calculations are restricted to instances when FCL (an MBL cloud) is above this observation point (detected by satellites, section 2.2.1). This assumption is supported by studies in the Atacama region, which report cloud tops reaching up to 1200 m ASL, an elevation at which Lomas ecosystems are typically found (Cereceda et al., 2008; Koch et al., 2019). The average of both observation points represents the mean MBL condition. Therefore, this method enabled us to characterize the vertical profiles of the MBL in terms of specific humidity (q) and potential temperature (θ) (Fig. 1a). These variables allowed us to infer the height at which the air parcels, lifted from the surface (lower station of the transect), reach their condensation level (LCL). This level is determined by the pressure level at which the specific humidity equals the saturated specific humidity (q = qsat). Since advective fog is mainly composed of Sc clouds, which are boundary layer clouds, it is safe to assume that LCL ∼ CB. The details of this methodology can be found in Lobos-Roco et al.‘s recent work (2018).This research was funded by the Chilean National Commission of Science and Technology through ANID/FONDECYT/11200789. FS acknowledges the support from the Centro de Desarrollo Urbano Sustentable (CEDEUS - ANID/FONDAP/15110020) and from the Centro de Excelencia en Geotermia de los Andes (CEGA - ANID/FONDAP/15200001). CdR and FS thanks the support from ANID/ATE/230006. We acknowledge the three anonymous reviewers and E. Fiorin for her English language editing.

Muestra la fuente de financiamiento declarada en la publicación.