Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1007/978-3-031-43619-2_4 | ||
| Año | 2023 | ||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The use of Shap scores has become widespread in Explainable AI. However, their computation is in general intractable, in particular when done with a black-box classifier, such as neural network. Recent research has unveiled classes of open-box Boolean Circuit classifiers for which Shap can be computed efficiently. We show how to transform binary neural networks into those circuits for efficient Shap computation. We use logic-based knowledge compilation techniques. The performance gain is huge, as we show in the light of our experiments.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bertossi, Leopoldo | Hombre |
SKEMA Business Sch - Canadá
|
| 2 | Leon, Jorge E. | - |
Universidad Adolfo Ibáñez - Chile
|
| 3 | Gaggl, S | - | |
| 4 | Martinez, MV | - | |
| 5 | Ortiz, M | - |
| Fuente |
|---|
| ANID -Millennium Science Initiative Program |
| SKEMA Business School |
| CENIA, Chile |
| Agradecimiento |
|---|
| Special thanks to Arthur Choi, Andy Shih, Norbert Manthey, Maximilian Schleich and Adnan Darwiche, for their valuable help. Work was funded by ANID -Millennium Science Initiative Program -Code ICN17002; CENIA, FB210017 (Financiamiento Basal para Centros Cient ' ificos y Tecnologicos de Excelencia de ANID), Chile; SKEMA Business School, and NSERC-DG 2023-04650. L. Bertossi is a Professor Emeritus at Carleton University, Canada. |