Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JALGEBRA.2023.12.021 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Let n be an even natural number. We compute the periods of any �2-dimensional complete intersection algebraic cycle inside an n-dimensional non-degenerated intersection of a projective simplicial toric variety. Using this information we determine the cycle class of such algebraic cycles. As part of the proof we develop a toric generalization of a classical theorem of Macaulay about complete intersection Artin Gorenstein rings, and we generalize an algebraic cup formula for residue forms due to Carlson and Griffiths to the toric setting.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Villaflor Loyola, Roberto | - |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Agradecimiento |
|---|
| Conventions and notations. In order to avoid confusions, we will reserve some letters to always denote the same objects. In what follows we fix the notations we will be using along the article: Acknowledgments. Part of this work was inspired by conversations and correspondence with Andreas P. Braun, Alicia Dickenstein, Hossein Movasati and Giancarlo Urzúa. I also got benefited from discussions with Jorge Vitório Pereira, Jorge Duque Franco, Hugo Fortin and William D. Montoya. Special thanks go to Pedro Montero and Sebastián Velazquez for several useful discussions and references. I am also grateful to the anonymous referee, for his/her careful reading and corrections. Financial support was provided by Fondecyt ANID postdoctoral grant 3210020 . |