Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/JRSSSC/QLAE002 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We propose a Bayesian time-varying model that learns about the dynamics governing joint extreme values over time. Our model relies on dual measures of time-varying extremal dependence, that are modelled via a suitable class of generalized linear models conditional on a large threshold. The simulation study indicates that the proposed methods perform well in a variety of scenarios. The application of the proposed methods to some of the world's most important stock markets reveals complex patterns of extremal dependence over the last 30 years, including passages from asymptotic dependence to asymptotic independence.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Lee, Junho | - |
Financial Supervisory Serv - Corea del Sur
Financial Supervisory Service - Corea del Sur |
| 2 | de Carvalho, Miguel | Hombre |
UNIV EDINBURGH - Reino Unido
Univ Aveiro - Portugal The University of Edinburgh - Reino Unido Universidade de Aveiro - Portugal |
| 3 | Rua, Antonio | Hombre |
Banco Portugal - Portugal
Nova Sch Business & Econ - Portugal Banco de Portugal - Portugal Nova School of Business and Economics, Universidade Nova de Lisboa - Portugal |
| 4 | Avila, Julio | - |
Pontificia Universidad Católica de Chile - Chile
|
| Fuente |
|---|
| Fundação para a Ciência e a Tecnologia |
| Universidade de Aveiro |
| Center for Research and Development in Mathematics and Applications |
| CIDMA (Universidade de Aveiro) and is funded by the Fundacao para a Ciencia e a Tecnologia, I.P. (FCT |
| Agradecimiento |
|---|
| This work was supported by CIDMA (Universidade de Aveiro) and is funded by the Fundacao para a Ciencia e a Tecnologia, I.P. (FCT, Funder ID: 50110000187) under Grants https://doi. org/10.54499/UIDB/04106/2020 and https://doi.org/10.54499/UIDP/04106/2020. |
| This work was supported by CIDMA (Universidade de Aveiro) and is funded by the Funda\u00E7\u00E3o para a Ci\u00EAncia e a Tecnologia, I.P. (FCT, Funder ID: 50110000187) under Grants. |