Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/M2AN/2023099 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present the analysis of an abstract parameter-dependent mixed variational formulation based on Volterra integrals of second kind. Adapting the classic mixed theory in the Volterra equations setting, we prove the well posedness of the resulting system. Stability and error estimates are derived, where all the estimates are uniform with respect to the perturbation parameter. We provide applications of the developed analysis for a viscoelastic Timoshenko beam and report numerical tests for this problem. We also comment, numerically, the performance of a viscoelastic Reissner-Mindlin plate.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | HERNANDEZ-HERNANDEZ, ERWIN CARLOS | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 2 | LEPE-ARAYA, FELIPE ANDRES | Hombre |
Universidad del Bío Bío - Chile
|
| 3 | Vellojin, Jesus | Hombre |
Universidad del Bío Bío - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| DIUBB |
| ANID-Chile |
| Agenția Națională pentru Cercetare și Dezvoltare |
| Agencia Nacional de Investigacin y Desarrollo (ANID) |
| Agradecimiento |
|---|
| No Statement Available |
| Erwin Hernández has been partially supported by FONDECYT project No. 1181098, Chile. Felipe Lepe has been partially supported by DIUBB through project 2120173 GI/C Universidad del Bío-Bío and FONDECYT project No. 11200529, Chile. Jesus Vellojin has been partially supported by the National Agency for Research and Development, ANID-Chile through project Anillo of Computational Mathematics for Desalination Processes ACT210087, FONDECYT Postdoctorado project 3230302, and by project Centro de Modelamiento Matemático (CMM), FB210005, BASAL funds for centers of excellence. |