Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/ICAR58858.2023.10406847 | ||||
| Año | 2023 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Currently, mobile robotic applications in the agricultural field are being called for safety and accurate handling of farm crops. During the crop yield, manoeuvring tasks on changing and heterogeneous terrain surfaces lead autonomous vehicles to loose motion precision due to slipping or sliding phenomena, thus requiring an adaptable motion strategy to overcome a deteriorated control performance. In this scenario, this work proposes a gain-scheduling technique based on three non-supervised learning algorithms. In particular, clustering and self-tuning strategies are combined to obtain the best control parameters of trajectory tracking controllers. The proposed approaches are real-time implemented on two motion controllers and tested on an omnidirectional holonomic mobile manipulator -KUKA youBot. Results from trials with different reference trajectories and navigation terrains showed that the control performance could be enhanced, reaching around a 30.1% of tracking error reduction and 54.6% of total cost when using the proposed clustering approaches. The latter may impact on the energy resources of the mobile manipulator throughout harvesting tasks.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aro, Katherine | - |
Universidad Católica del Norte - Chile
|
| 2 | Zepeda, Octavio | - |
Universidad Católica del Norte - Chile
|
| 3 | Menendez, Oswaldo | Hombre |
Universidad Católica del Norte - Chile
|
| 4 | Prado, Alvaro | Hombre |
Universidad Católica del Norte - Chile
|
| 5 | IEEE | Corporación |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Católica del Norte |
| Anillo de Investigación en Ciencia y Tecnología |
| Agencia Nacional de Investigación y Desarrollo |
| Departamento de Ingeniería de Sistemas y Computación |
| Fondef IDeA I+D 2021 |
| Departamento de Ingenieria de Sistemas y Computacion with the Universidad Catolica del Norte |
| ANID under Fondecyt iniciacion en investigacion 2023 grant |
| Agradecimiento |
|---|
| This work was supported and funded by ANID under Fondecyt iniciacion en investigacion 2023 grant 11230962. This research was also supported by the Departamento de Ingenieria de Sistemas y Computacion with the Universidad Catolica del Norte under project 202203010029 -VRIDT-UCN. It was also supported by Anillo de Investigacion en Ciencia y Tecnologia -ACT210052, and Fondef IDEA I+D 2021 Cod. ID21|10181. |
| This work was supported and funded by ANID under Fondecyt iniciación en investigación 2023 grant 11230962. This research was also supported by the Departamento de Ingeniería de Sistemas y Computación with the Universidad Católica del Norte under project 202203010029 -VRIDT-UCN. It was also supported by Anillo de Investigación en Ciencia y Tecnología -ACT210052, and Fondef IDEA I+D 2021 Cod. ID21|10181. |