Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Planar matrices and arrays of Feynman diagrams
Indexado
WoS WOS:001176180400001
Scopus SCOPUS_ID:85186329277
DOI 10.1088/1572-9494/AD102D
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Recently, planar collections of Feynman diagrams were proposed by Borges and one of the authors as the natural generalization of Feynman diagrams for the computation of k = 3 biadjoint amplitudes. Planar collections are one-dimensional arrays of metric trees satisfying an induced planarity and compatibility condition. In this work, we introduce planar matrices of Feynman diagrams as the objects that compute k = 4 biadjoint amplitudes. These are symmetric matrices of metric trees satisfying compatibility conditions. We introduce two notions of combinatorial bootstrap techniques for finding collections from Feynman diagrams and matrices from collections. As applications of the first, we find all 693, 13 612 and 346 710 collections for (k, n) = (3, 7), (3, 8) and (3, 9), respectively. As applications of the second kind, we find all 90 608 and 30 659 424 planar matrices that compute (k, n) = (4, 8) and (4, 9) biadjoint amplitudes, respectively. As an example of the evaluation of matrices of Feynman diagrams, we present the complete form of the (4, 8) and (4, 9) biadjoint amplitudes. We also start a study of higher-dimensional arrays of Feynman diagrams, including the combinatorial version of the duality between (k, n) and (n - k, n) objects.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Physics, Multidisciplinary
Scopus
Physics And Astronomy (Miscellaneous)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Cachazo, Freddy - Perimeter Inst Theoret Phys - Canadá
Perimeter Institute for Theoretical Physics - Canadá
2 Guevara, Alfredo - Perimeter Inst Theoret Phys - Canadá
Univ Waterloo - Canadá
Universidad de Concepción - Chile
Harvard University - Estados Unidos
Perimeter Institute for Theoretical Physics - Canadá
University of Waterloo - Canadá
Society of Fellows, Harvard University - Estados Unidos
3 Umbert, Bruno - Perimeter Inst Theoret Phys - Canadá
Western Univ - Canadá
Perimeter Institute for Theoretical Physics - Canadá
Western University - Canadá
4 Zhang, Yong - Perimeter Inst Theoret Phys - Canadá
CASSACA - China
Univ Chinese Acad Sci - China
Perimeter Institute for Theoretical Physics - Canadá
Institute of Theoretical Physics Chinese Academy of Sciences - China
University of Chinese Academy of Sciences - China

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Government of Canada through the Department of Innovation, Science and Economic Development Canada
Province of Ontario through the Ministry of Economic Development, Job Creation and Trade
Government of Canada
Innovation, Science and Economic Development Canada
Ministero dello Sviluppo Economico
Job Creation and Trade

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We would like to thank Nick Early and Song He for their useful discussions. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Economic Development, Job Creation and Trade.
We would like to thank Nick Early and Song He for their useful discussions. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Economic Development, Job Creation and Trade.

Muestra la fuente de financiamiento declarada en la publicación.