Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Deep learning and multi-station classification of volcano-seismic events of the Nevados del Chillán volcanic complex (Chile)
Indexado
WoS WOS:001102551100020
Scopus SCOPUS_ID:85171155256
DOI 10.1007/S00521-023-08994-Z
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This paper presents a methodology for developing a volcano-seismic event classification system using a multi-station deep learning approach to support monitoring the Nevados del Chillán Volcanic Complex, which has been active since 2017. A convolutional network of multiple inputs processes the information from an event recorded up to five seismic stations. Each record is represented by its normalized spectrogram; thus, the network may receive from one to five spectrograms as input. The design includes entering additional information into the network, like the stations configuration and the event duration, information not provided by the spectrograms. Finally, this work includes the design and implementation of a relational database to access the continuous traces of events, showing different subsets of data quickly and efficiently. The results show that the classification of an event recorded up to five stations is substantially more effective than a single-station strategy. However, incorporating additional information of the signal does not significantly improve the classification performance.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ferreira, Alejandro Hombre Universidad de La Frontera - Chile
2 Curilem, Millaray - Universidad de La Frontera - Chile
3 Gomez, Walter - Universidad de La Frontera - Chile
4 Rios, Ricardo - Universidade Federal da Bahia - Brasil
Univ Fed Bahia - Brasil

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondef
We thank OVDAS and the FONDEF ID19|10397 Project for having the data used in this work. In addition, thanks to the Department of Mathematical Engineering of the Universidad de La Frontera for having the Khipu Server to perform the computation and training
Department of Mathematical Engineering of the Universidad de La Frontera

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank OVDAS and the FONDEF ID19|10397 Project for having the data used in this work. In addition, thanks to the Department of Mathematical Engineering of the Universidad de La Frontera for having the Khipu Server to perform the computation and training of the models.
We thank OVDAS and the FONDEF ID19|10397 Project for having the data used in this work. In addition, thanks to the Department of Mathematical Engineering of the Universidad de La Frontera for having the Khipu Server to perform the computation and training of the models.
We thank OVDAS and the FONDEF ID19|10397 Project for having the data used in this work. In addition, thanks to the Department of Mathematical Engineering of the Universidad de La Frontera for having the Khipu Server to perform the computation and training of the models.

Muestra la fuente de financiamiento declarada en la publicación.