Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Effective precursors for self-organization of complex systems into a critical state based on dynamic series data
Indexado
WoS WOS:001076081200001
Scopus SCOPUS_ID:85173569532
DOI 10.3389/FPHY.2023.1274685
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Many different precursors are known, but not all of which are effective, i.e., giving enough time to take preventive measures and with a minimum number of false early warning signals. The study aims to select and study effective early warning measures from a set of measures directly related to critical slowing down as well as to the change in the structure of the reconstructed phase space in the neighborhood of the critical transition point of sand cellular automata. We obtained a dynamical series of the number of unstable nodes in automata with stochastic and deterministic vertex collapse rules, with different topological graph structure and probabilistic distribution law for pumping of automata. For these dynamical series we computed windowed early warning measures. We formulated the notion of an effective measure as the measure that has the smallest number of false signals and the longest early warning time among the set of early warning measures. We found that regardless of the rules, topological structure of graphs, and probabilistic distribution law for pumping of automata, the effective early warning measures are the embedding dimension, correlation dimension, and approximation entropy estimated using the false nearest neighbors algorithm. The variance has the smallest early warning time, and the largest Lyapunov exponent has the greatest number of false early warning signals. Autocorrelation at lag-1 and Welch’s estimate for the scaling exponent of power spectral density cannot be used as early warning measures for critical transitions in the automata. The efficiency definition we introduced can be used to search for and investigate new early warning measures. Embedding dimension, correlation dimension and approximation entropy can be used as effective real-time early warning measures for critical transitions in real-world systems isomorphic to sand cellular automata such as microblogging social network and stock exchange.

Revista



Revista ISSN
Frontiers In Physics 2296-424X

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Physics, Multidisciplinary
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Dmitriev, Andrey Hombre HSE University - Rusia
Universidad Bernardo O'Higgins - Chile
HSE Univ - Rusia
2 Lebedev, Andrey Hombre HSE University - Rusia
HSE Univ - Rusia
3 Kornilov, Vasily Hombre HSE University - Rusia
HSE Univ - Rusia
4 Dmitriev, Victor Hombre HSE University - Rusia
HSE Univ - Rusia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Research University Higher School of Economics
Basic Research Program at the National Research University Higher School of Economics (HSE University)
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The work is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The work is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University).
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The work is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University).

Muestra la fuente de financiamiento declarada en la publicación.