Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3934/MBE.2023788 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The deep integration of edge computing and Artificial Intelligence (AI) in IoT (Internet of Things)-enabled smart cities has given rise to new edge AI paradigms that are more vulnerable to attacks such as data and model poisoning and evasion of attacks. This work proposes an online poisoning attack framework based on the edge AI environment of IoT-enabled smart cities, which takes into account the limited storage space and proposes a rehearsal-based buffer mechanism to manipulate the model by incrementally polluting the sample data stream that arrives at the appropriately sized cache. A maximum-gradient-based sample selection strategy is presented, which converts the operation of traversing historical sample gradients into an online iterative computation method to overcome the problem of periodic overwriting of the sample data cache after training. Additionally, a maximum-loss-based sample pollution strategy is proposed to solve the problem of each poisoning sample being updated only once in basic online attacks, transforming the bi-level optimization problem from offline mode to online mode. Finally, the proposed online gray-box poisoning attack algorithms are implemented and evaluated on edge devices of IoT-enabled smart cities using an online data stream simulated with offline open-grid datasets. The results show that the proposed method outperforms the existing baseline methods in both attack effectiveness and overhead.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Zhu, Yanxu | - |
University of Electronic Science and Technology of China - China
Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province - China Intelligent IoT Communication Technology Engineering Research Center - China Univ Elect Sci & Technol China - China Aircraft Swarm Intelligent Sensing & Cooperat Cont - China Intelligent IoT Commun Technol Engn Res Ctr - China Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT - China |
| 2 | Wen, Hong | - |
University of Electronic Science and Technology of China - China
Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province - China Intelligent IoT Communication Technology Engineering Research Center - China Univ Elect Sci & Technol China - China Aircraft Swarm Intelligent Sensing & Cooperat Cont - China Intelligent IoT Commun Technol Engn Res Ctr - China Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT - China |
| 3 | Wu, Jinsong | - |
Guilin University of Electronic Technology - China
Universidad de Chile - Chile Guilin Univ Elect Technol - China |
| 4 | Zhao, Runhui | - |
University of Electronic Science and Technology of China - China
Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province - China Intelligent IoT Communication Technology Engineering Research Center - China Univ Elect Sci & Technol China - China Aircraft Swarm Intelligent Sensing & Cooperat Cont - China Intelligent IoT Commun Technol Engn Res Ctr - China Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT - China |
| Fuente |
|---|
| National Key R&D Program of China |
| National Key Research and Development Program of China |