Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Online data poisoning attack against edge AI paradigm for IoT-enabled smart city
Indexado
WoS WOS:001075624400006
Scopus SCOPUS_ID:85173616085
DOI 10.3934/MBE.2023788
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The deep integration of edge computing and Artificial Intelligence (AI) in IoT (Internet of Things)-enabled smart cities has given rise to new edge AI paradigms that are more vulnerable to attacks such as data and model poisoning and evasion of attacks. This work proposes an online poisoning attack framework based on the edge AI environment of IoT-enabled smart cities, which takes into account the limited storage space and proposes a rehearsal-based buffer mechanism to manipulate the model by incrementally polluting the sample data stream that arrives at the appropriately sized cache. A maximum-gradient-based sample selection strategy is presented, which converts the operation of traversing historical sample gradients into an online iterative computation method to overcome the problem of periodic overwriting of the sample data cache after training. Additionally, a maximum-loss-based sample pollution strategy is proposed to solve the problem of each poisoning sample being updated only once in basic online attacks, transforming the bi-level optimization problem from offline mode to online mode. Finally, the proposed online gray-box poisoning attack algorithms are implemented and evaluated on edge devices of IoT-enabled smart cities using an online data stream simulated with offline open-grid datasets. The results show that the proposed method outperforms the existing baseline methods in both attack effectiveness and overhead.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematical & Computational Biology
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Zhu, Yanxu - University of Electronic Science and Technology of China - China
Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province - China
Intelligent IoT Communication Technology Engineering Research Center - China
Univ Elect Sci & Technol China - China
Aircraft Swarm Intelligent Sensing & Cooperat Cont - China
Intelligent IoT Commun Technol Engn Res Ctr - China
Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT - China
2 Wen, Hong - University of Electronic Science and Technology of China - China
Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province - China
Intelligent IoT Communication Technology Engineering Research Center - China
Univ Elect Sci & Technol China - China
Aircraft Swarm Intelligent Sensing & Cooperat Cont - China
Intelligent IoT Commun Technol Engn Res Ctr - China
Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT - China
3 Wu, Jinsong - Guilin University of Electronic Technology - China
Universidad de Chile - Chile
Guilin Univ Elect Technol - China
4 Zhao, Runhui - University of Electronic Science and Technology of China - China
Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province - China
Intelligent IoT Communication Technology Engineering Research Center - China
Univ Elect Sci & Technol China - China
Aircraft Swarm Intelligent Sensing & Cooperat Cont - China
Intelligent IoT Commun Technol Engn Res Ctr - China
Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT - China

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Key R&D Program of China
National Key Research and Development Program of China

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work is supported by National Key R&D Program of China (No.2019YFB1803204).
<B>Acknowledgments</B> This work is supported by National Key R&D Program of China (No.2019YFB1803204) .

Muestra la fuente de financiamiento declarada en la publicación.