Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1142/S0219530523500239 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we focus on the Zakharov-Kuznetsov (ZK) equation in the n-dimensional setting with n ≥ 2 and investigate its smoothness properties. We extend the well-known regularity propagation phenomenon observed in the 2D and 3D cases, where the regularity of the initial data on certain half-spaces propagates with infinite speed, to the case where the regularity of the initial data is measured on a fractional scale. To achieve this, we introduce new localization formulas that enable us to describe the regularity of the solution on a specific class of subsets in Euclidean space. This work provides insights into the regularity behavior of solutions of the ZK equation in higher dimensions and with more general initial data.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MENDEZ, ARGENIS J. | - |
Pontificia Universidad Católica de Valparaíso - Chile
Pontificia Univ Catolica Valparaıso - Chile |