Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.2140/AGT.2023.23.2925 | ||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper is devoted to the construction of differential geometric invariants for the classification of “quaternionic” vector bundles. Provided that the base space is a smooth manifold of dimension two or three endowed with an involution that leaves fixed only a finite number of points, it is possible to prove that the Wess–Zumino term and the Chern–Simons invariant yield topological invariants able to distinguish between inequivalent realizations of “quaternionic” structures. This is a nontrivial generalization of results previously known only in the case of tori with time-reversal involution.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | DE NITTIS, Giuseppe | - |
Facultad de Matemáticas - Chile
|
| 2 | Gomi, Kiyonori | - |
Tokyo Institute of Technology - Japón
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Japan Society for the Promotion of Science |
| Agradecimiento |
|---|
| Acknowledgements De Nittis is supported by the grant FONDECYT regular 2019, 1190204. Gomi is supported by the JSPS KAKENHI grant 15K04871. The authors wish to thank Krzysztof Gawędzki for very useful discussions. De Nittis wants to thank the Erwin Schrödinger International Institute for Mathematics and Physics (ESI) of Vienna where the results described in this paper were presented for the first time during the thematic program Topological phases of quantum matter held in 2014. |