Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.DAM.2018.02.007 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
For every connected graph G, a subgraph H of G is isometric if the distance between any two vertices in H is the same in H as in G. A distance-preserving elimination ordering of G is a total ordering of its vertex-set V (G), denoted (v(1), v(2),....v(n)), such that any subgraph G(i)= G \ (v(1), v(2),, v(i)) with 1 <= i < n is isometric. This kind of ordering has been introduced by Chepoi in his study on weakly modular graphs (Chepoi, 1998). We prove that it is NP complete to decide whether such ordering exists for a given graph even if it has diameter at most 2. Then, we prove on the positive side that the problem of computing a distance preserving ordering when there exists one is fixed-parameter-tractable in the treewidth. Lastly, we describe a heuristic in order to compute a distance-preserving ordering when there exists one that we compare to an exact exponential time algorithm and to an ILP formulation for the problem. (C) 2018 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Coudert, David | Hombre |
Univ Cote Azur - Francia
Université Côte d'Azur - Francia |
| 2 | Ducoffe, Guillaume | Hombre |
ICI Natl Inst Res & Dev Informat - Rumania
Univ Bucharest ICUB - Rumania Institutul Naţional de Cercetare-Dezvoltare in Informatica - Rumania Universitatea din Bucuresti - Rumania |
| 3 | Nisse, Nicolas | Hombre |
Univ Cote Azur - Francia
Université Côte d'Azur - Francia |
| 4 | SOTO-GOMEZ, MAURICIO ABEL | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| ANR project Stint |
| ANR program "Investments for the Future" |
| Inria associated team AIDyNet |
| ANR project Stint |
| Inria Associated Team AlDyNet |
| ANR-13-BS02-0007 |
| Agradecimiento |
|---|
| This work has been supported by ANR project Stint under reference ANR-13-BS02-0007, ANR program "Investments for the Future" under reference ANR-11-LABX-0031-01, and the Inria associated team AIDyNet. |
| This work has been supported by ANR project Stint under reference ANR-13-BS02-0007 , ANR program “Investments for the Future” under reference ANR-11-LABX-0031-01 , and the Inria associated team AlDyNet. |