Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S11538-023-01222-8 | ||||
| Año | 2023 | ||||
| Tipo | revisión |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Keloids are fibroproliferative disorders described by excessive growth of fibrotic tissue, which also invades adjacent areas (beyond the original wound borders). Since these disorders are specific to humans (no other animal species naturally develop keloid-like tissue), experimental in vivo/in vitro research has not led to significant advances in this field. One possible approach could be to combine in vitro human models with calibrated in silico mathematical approaches (i.e., models and simulations) to generate new testable biological hypotheses related to biological mechanisms and improved treatments. Because these combined approaches do not really exist for keloid disorders, in this brief review we start by summarising the biology of these disorders, then present various types of mathematical and computational approaches used for related disorders (i.e., wound healing and solid tumours), followed by a discussion of the very few mathematical and computational models published so far to study various inflammatory and mechanical aspects of keloids. We conclude this review by discussing some open problems and mathematical opportunities offered in the context of keloid disorders by such combined in vitro/in silico approaches, and the need for multi-disciplinary research to enable clinical progress.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Eftimie, R. | - |
Laboratoire de Mathématiques de Besançon (LmB) - Francia
Univ Franche Comte - Francia |
| 2 | Rolin, G. | - |
Centre Hospitalier Universitaire de Besancon - Francia
Interactions Hôte-Greffon, Tumeur et Ingénierie Cellulaire et Génique - Francia CHU Besancon - Francia Univ Franche Comte - Francia |
| 3 | Adebayo, O. E. | - |
Laboratoire de Mathématiques de Besançon (LmB) - Francia
Univ Franche Comte - Francia |
| 4 | Urcun, S. | - |
University of Luxembourg - Luxemburgo
Univ Luxembourg - Luxemburgo |
| 5 | Chouly, F. | Hombre |
Institut de Mathématiques de Bourgogne - Francia
Universidad de Chile - Chile Universidad de Concepción - Chile Univ Franche Comte - Francia CNRS - Chile |
| 6 | Bordas, S. P.A. | - |
University of Luxembourg - Luxemburgo
Univ Luxembourg - Luxemburgo |
| Fuente |
|---|
| ANR |
| Fonds National de la Recherche Luxembourg |
| Luxembourg National Research Fund (FNR) |
| Center for Mathematical Modelling |
| EIPHI |
| I-Site BFC |
| French Agence Nationale de Recherche |
| RE and OA acknowledge funding from a French Agence Nationale de Recherche (ANR) Grant Number ANR-21-CE45-0025-01; SPAB and SU acknowledge funding from a Luxembourg National Research Fund (FNR) Grant Number INTER/ANR/21/16399490; G.R. acknowledges funding f |
| French Agence Nationale de Recherche (ANR) |
| ANR project S-KELOID |
| Center for Mathematical Modelling Grant |
| Agradecimiento |
|---|
| RE and OA acknowledge funding from a French Agence Nationale de Recherche (ANR) Grant Number ANR-21-CE45-0025-01; SPAB and SU acknowledge funding from a Luxembourg National Research Fund (FNR) Grant Number INTER/ANR/21/16399490; G.R. acknowledges funding from an ANR Grant Number ANR-21-CE45-0025-03; FC’s work is partially supported by the I-Site BFC project NAANoD, the EIPHI Graduate School (contract ANR-17-EURE-0002) and the ANR project S-KELOID (ANR-21-CE45-0025-04). FC is also grateful to the Center for Mathematical Modelling Grant FB20005. |
| RE and OA acknowledge funding from a French Agence Nationale de Recherche (ANR) Grant Number ANR-21-CE45-0025-01; SPAB and SU acknowledge funding from a Luxembourg National Research Fund (FNR) Grant Number INTER/ANR/21/16399490; G.R. acknowledges funding from an ANR Grant Number ANR-21-CE45-0025-03; FC’s work is partially supported by the I-Site BFC project NAANoD, the EIPHI Graduate School (contract ANR-17-EURE-0002) and the ANR project S-KELOID (ANR-21-CE45-0025-04). FC is also grateful to the Center for Mathematical Modelling Grant FB20005. |
| RE and OA acknowledge funding from a French Agence Nationale de Recherche (ANR) Grant Number ANR-21-CE45-0025-01; SPAB and SU acknowledge funding from a Luxembourg National Research Fund (FNR) Grant Number INTER/ANR/21/16399490; G.R. acknowledges funding from an ANR Grant Number ANR-21-CE45-0025-03; FC's work is partially supported by the I-Site BFC project NAANoD, the EIPHI Graduate School (contract ANR-17-EURE-0002) and the ANR project S-KELOID (ANR-21-CE45-0025-04). FC is also grateful to the Center for Mathematical Modelling Grant FB20005. |