Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10092-023-00544-2 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We propose and analyze a new mixed finite element method for the nonlinear problem given by the stationary convective Brinkman–Forchheimer equations. In addition to the original fluid variables, the pseudostress is introduced as an auxiliary unknown, and then the incompressibility condition is used to eliminate the pressure, which is computed afterwards by a postprocessing formula depending on the aforementioned tensor and the velocity. As a consequence, we obtain a mixed variational formulation consisting of a nonlinear perturbation of, in turn, a perturbed saddle point problem in a Banach spaces framework. In this way, and differently from the techniques previously developed for this model, no augmentation procedure needs to be incorporated into the formulation nor into the solvability analysis. The resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that recently established solvability results for perturbed saddle-point problems in Banach spaces, along with the well-known Banach–Nečas–Babuška and Banach theorems, are applied to prove the well-posedness of the continuous and discrete systems. The finite element discretization involves Raviart–Thomas elements of order k≥ 0 for the pseudostress tensor and discontinuous piecewise polynomial elements of degree ≤ k for the velocity. Stability, convergence, and optimal a priori error estimates for the associated Galerkin scheme are obtained. Numerical examples confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method. In particular, the case of flow through a 2D porous media with fracture networks is considered.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Caucao, Sergio | Hombre |
Universidad Católica de la Santísima Concepción - Chile
|
| 2 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 3 | GATICA-SIMPERTIGUE, LUIS FERNANDO | Hombre |
Universidad Católica de la Santísima Concepción - Chile
Universidad de Concepción - Chile |
| Fuente |
|---|
| Universidad de Concepción |
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Católica de la Santísima Concepción |
| Centro de Investigación en Ingeniería Matemática |
| Centro de Investigacion en Ingenieria Matematica (CI2MA) |
| ANID-Chile |
| Anillo of Computational Mathematics for Desalination Processes |
| Grupo de Investigación en Análisis Numérico y Cálculo Científico |
| Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas |
| Grupo de Investigacion en Analisis Numerico y Calculo Cientifico (GIANuC2) |
| Agradecimiento |
|---|
| This research was supported by ANID-Chile through the projects Centro de Modelamiento Matemático (FB210005), Anillo of Computational Mathematics for Desalination Processes (ACT210087), Fondecyt 11220393, and Fondecyt 1181748; by Grupo de Investigación en Análisis Numérico y Cálculo Científico (GIANuC), Universidad Católica de la Santísima Concepción; and by Centro de Investigación en Ingeniería Matemática (CIMA), Universidad de Concepción. |
| This research was supported by ANID-Chile through the projects Centro de Modelamiento Matematico (FB210005), Anillo of Computational Mathematics for DesalinationProcesses (ACT210087), Fondecyt 11220393, and Fondecyt 1181748; by Grupo de Investigacion en Analisis Numerico y Calculo Cientifico (GIANuC2), Universidad Catolica de la Santisima Concepcion;and by Centro de Investigacion en Ingenieria Matematica (CI2MA), Universidad de Concepcion |