Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Principles for Optimal Window Size Selection for Infant and Adult EEG Connectivity Analysis
Indexado
Scopus SCOPUS_ID:85174729701
DOI 10.1109/ICSIP57908.2023.10271014
Año 2023
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Neural connectivity analysis is often performed on continuous data that has been discretized into temporal windows of a fixed length. However, the selection of an optimal window length is non-trivial, and depends on the properties of the connectivity metric being used as well as the effects of interest within the data (e.g. developmental or inter-brain effects). A systematic investigation of these factors, and objective criteria for window size selection are currently missing in the literature, particularly in regard to pediatric datasets. Here, we provide a principled examination of the effect of window size on optimization of signal to noise ratio for linear and non-linear EEG connectivity, as applied to infant, adult and dyadic (infant-adult) datasets. We employed a linear weighted phase lag index (wPLI), and a nonlinear weighted symbolic mutual information (wSMI) metric to assess brain connectivity for each dataset. Our results showed a clear polar dissociation between linear and non-linear metrics, as well as between infant and adult datasets in optimal window size. Further, optimal dyadic (infant-adult) window size settings defaulted to one or the partner rather than reflecting an intermediate compromise. Given the specificity of these results (i.e. there was no single window size that was optimal for all contrasts), we conclude that a formal analysis of optimal window size may be useful prior to conducting any new connectivity analysis. Here, we recommend guiding principles, performance metrics and decision criteria for optimal and unbiased window size selection.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Santamaria, Lorena - Nanyang Technological University - Singapur
2 Canales-Johnson, Andres Hombre University of Cambridge - Reino Unido
3 Noreika, Valdas Hombre Queen Mary University of London - Reino Unido
4 Leong, Victorial - Nanyang Technological University - Singapur
5 De La Salud, Facultad De Ciencias - Universidad Católica del Maule - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Agency for Science, Technology and Research

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
AACKNOWLEDGMENTS This research is supported by the RIE2025 Human Potential Programme Prenatal/Early Childhood Grant (H22P0M0002), administered by A*STAR.

Muestra la fuente de financiamiento declarada en la publicación.