Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Exploring soil property spatial patterns in a small grazed catchment using machine learning
Indexado
WoS WOS:001087919700001
Scopus SCOPUS_ID:85174802734
DOI 10.1007/S12145-023-01125-1
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Acquiring comprehensive insights into soil properties at various spatial scales is paramount for effective land management, especially within small catchment areas that often serve as vital pastured landscapes. These regions, characterized by the intricate interplay of agroforestry systems and livestock grazing, face a pressing challenge: mitigating soil degradation while optimizing land productivity. This study aimed to analyze the spatial distribution of eight topsoil (0–5 cm) properties (clay, silt, sand, pH, cation exchange capacity, available potassium, total nitrogen, and soil organic matter) in a small grazed catchment. Four machine learning algorithms—Random Forest (RF), Support Vector Machines (SVM), Cubist, and K-Nearest Neighbors (kNN)—were used. The Boruta algorithm was employed to reduce the dimensionality of environmental covariates. The model’s accuracy was assessed using the Concordance Correlation Coefficient (CCC) and Root Mean Square Error (RMSE). Additionally, uncertainty in predicted maps was quantified and assessed. The results revealed variations in predictive model performance for soil properties. Specifically, kNN excelled for clay, silt, and sand content, while RF performed well for soil pH, CEC, and TN. Cubist and SVM achieved accuracy in predicting AK and SOM, respectively. Clay, silt, CEC, and TN yielded favourable predictions, closely aligning with observations. Conversely, sand content, soil pH, AK, and SOM predictions were slightly less accurate, highlighting areas for improvement. Boruta algorithm streamlined covariate selection, reducing 23 covariates to 10 for clay and 4 for soil pH and AK prediction, enhancing model efficiency. Our study revealed spatial uncertainty patterns mirroring property distributions, with higher uncertainty in areas with elevated content. Model accuracy varied by confidence levels, performing best at intermediate levels and showing increased uncertainty at extremes. These findings offer insights into model capabilities and guide future research in soil property prediction. In conclusion, these results urge more research in small watersheds for soil and territorial management.

Revista



Revista ISSN
Earth Science Informatics 1865-0473

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geosciences, Multidisciplinary
Computer Science, Interdisciplinary Applications
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Barrena-González, Jesús - Universidad de Extremadura - España
UNIV EXTREMADURA - España
2 Gabourel-Landaverde, V. Anthony - Universidad de Extremadura - España
UNIV EXTREMADURA - España
3 Mora, Jorge Hombre Pontificia Universidad Católica de Chile - Chile
4 Contador, J. Francisco Lavado Hombre Universidad de Extremadura - España
UNIV EXTREMADURA - España
5 Fernández, Manuel Pulido - Universidad de Extremadura - España
UNIV EXTREMADURA - España

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
European Commission
European Union
Junta de Extremadura
European Regional Development Fund
European Social Fund
H2020 Marie Skłodowska-Curie Actions
Horizon 2020 Framework Programme
ANID PIA/BASAL
Agencia Nacional de Investigación y Desarrollo
CRUE-CSIC agreement
Springer Nature
European Regional Development Fund of the European Union
European Social Fund Plus
Consejería de Economía, Ciencia y Agenda Digital de la Junta de Extremadura
European Union’s Horizon 2020 Marie Skłodowska-Curie Actions
This work was made possible thanks to funding from the Consejera de Economa, Ciencia y Agenda Digital de la Junta de Extremadura and from the European Regional Development Fund of the European Union through reference grant IB16052. We would
Consejera de Economa, Ciencia y Agenda Digital de la Junta de Extremadura

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was made possible thanks to funding from the Consejería de Economía, Ciencia y Agenda Digital de la Junta de Extremadura and from the European Regional Development Fund of the European Union through reference grant IB16052. We would also like to thank the European Social Fund and the Junta de Extremadura for funding PhD student Jesús Barrena González (PD18016) and ANID PIA/BASAL FB0002 for funding to Jorge Mora. We extend our sincere gratitude to the European Union’s Horizon 2020 Marie Skłodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE) programme under Grant Agreement number: 872384 for funding the project “Creating knowledge for UNDERsTanding ecosystem seRvicEs of agroforEStry systems through a holistic methodological framework” (H2020 MSCA-RISE “UNDERTREES”).
This work was made possible thanks to funding from the Consejeria de Economia, Ciencia y Agenda Digital de la Junta de Extremadura and from the European Regional Development Fund of the European Union through reference grant IB16052. We would also like to thank the European Social Fund and the Junta de Extremadura for funding PhD student Jesus Barrena Gonzalez (PD18016) and ANID PIA/BASAL FB0002 for funding to Jorge Mora. We extend our sincere gratitude to the European Union's Horizon 2020 Marie Sklodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE) programme under Grant Agreement number: 872384 for funding the project "Creating knowledge for UNDERsTanding ecosystem seRvicEs of agroforEStry systems through a holistic methodological framework" (H2020 MSCA-RISE "UNDERTREES").Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature

Muestra la fuente de financiamiento declarada en la publicación.