Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00029-023-00883-6 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The fusion ring for sl^ (n) m Wess–Zumino–Witten conformal field theories is known to be isomorphic to a factor ring of the ring of symmetric polynomials presented by Schur polynomials. We introduce a deformation of this factor ring associated with eigenpolynomials for the elliptic Ruijsenaars difference operators. The corresponding Littlewood–Richardson coefficients are governed by a Pieri rule stemming from the eigenvalue equation. The orthogonality of the eigenbasis gives rise to an analog of the Verlinde formula. In the trigonometric limit, our construction recovers the refined sl^ (n) m Wess–Zumino–Witten fusion ring associated with the Macdonald polynomials.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | van Diejen, Jan Felipe | Hombre |
Universidad de Talca - Chile
|
| 2 | Gorbe, Tamas | Hombre |
Rijksuniversiteit Groningen - Países Bajos
Univ Groningen - Países Bajos |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| European Union |
| H2020 Marie Skłodowska-Curie Actions |
| Horizon 2020 Framework Programme |
| Nemzeti Kutatási Fejlesztési és Innovációs Hivatal |
| NKFIH Grant |
| Agradecimiento |
|---|
| Helpful feedback from Stephen Griffeth and constructive remarks made by anonymous referees are gratefully acknowledged. The work of JFvD was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant # 1210015. TG was supported in part by the NKFIH Grant K134946. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 795471.} |
| Helpful feedback from Stephen Griffeth and constructive remarks made by anonymous referees are gratefully acknowledged. The work of JFvD was supported in part by the <EM>Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT)</EM> Grant # 1210015. TG was supported in part by the NKFIH Grant K134946. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 795471.} |