Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Water flow in a polymeric nanoslit channel with graphene and hexagonal boron nitride wall coatings: An atomistic study
Indexado
WoS WOS:001084581200001
Scopus SCOPUS_ID:85174945894
DOI 10.1063/5.0165657
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Low flow resistance is essential for the design of nanofluidic platforms. Here, we present a comparative atomic-level study analyzing the fundamentals of water flow enhancement in a polymeric nanochannel due to the implementation of monatomic thick coatings—specifically, graphene and hexagonal boron nitride (hBN). Our results obtained employing large scale non-equilibrium molecular dynamics simulations and continuum models, revealing significant values of slip lengths of ∼29 and ∼6 nm for graphene- and hBN-coated nanochannels, respectively. Equilibrium molecular dynamics simulations, using the Green-Kubo relation, show the significant effect that the partial charges of hBN coating layer have on the water-wall friction. In addition, consistent values of the slip length are obtained from independent sets of equilibrium and non-equilibrium molecular dynamics simulations, confirming that the computed interfacial friction coefficients hold across flow regimes where water molecules no longer occupy the most energetically stable zones at the interface. Hence, the lower interfacial friction observed in the graphene-coated channel leads to a higher water flow enhancement than the one computed in the hBN-coated channel. We also show that the natural undulations of two-dimensional honeycomb-like materials, implemented as wall coatings, remain largely unhindered due to strong interfacial coupling facilitated by π − π stacking between the underlying aromatic polymer substrate and coating monolayers. This is particularly relevant for graphene coatings, which display significant out-of-plane thermal rippling that further enhances water flow. This observation is supported by a stronger atomic-scale vibrational coupling at the water-graphene interface compared to that computed at the water-hBN interface.

Revista



Revista ISSN
Physics Of Fluids 1070-6631

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mechanics
Physics, Fluids & Plasmas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Becerra, Diego Hombre The Ohio State University - Estados Unidos
OHIO STATE UNIV - Estados Unidos
College of Engineering - Estados Unidos
2 Córdoba, Andrés Hombre Pritzker School of Molecular Engineering - Estados Unidos
UNIV CHICAGO - Estados Unidos
3 Walther, Jens Honore Hombre Technical University of Denmark - Dinamarca
Tech Univ Denmark - Dinamarca
4 ZAMBRANO-RODRIGUEZ, HARVEY ALEXANDER Hombre Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CONICYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
Chilean National Laboratory for High Performance Computing (NLHPC)
Agencia Nacional de Investigación y Desarrollo
Department of Physics, Harvard University
D.B. acknowledges the financial support from CONICYT under Scholarship No. 21181202. Partial funding is acknowledged from ANID through the FONDECYT Regular Project No. 1212053. The authors thank computational support from the Department of Physics at DTU a
ANID through the FONDECYT Regular Project
Department of Physics at DTU

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
D.B. acknowledges the financial support from CONICYT under Scholarship No. 21181202. Partial funding is acknowledged from ANID through the FONDECYT Regular Project No. 1212053. The authors thank computational support from the Department of Physics at DTU and from the Chilean National Laboratory for High Performance Computing (NLHPC, ECM-02).
D.B. acknowledges the financial support from CONICYT under Scholarship No. 21181202. Partial funding is acknowledged from ANID through the FONDECYT Regular Project No. 1212053. The authors thank computational support from the Department of Physics at DTU and from the Chilean National Laboratory for High Performance Computing (NLHPC, ECM-02).
D.B. acknowledges the financial support from CONICYT under Scholarship No. 21181202. Partial funding is acknowledged from ANID through the FONDECYT Regular Project No. 1212053. The authors thank computational support from the Department of Physics at DTU and from the Chilean National Laboratory for High Performance Computing (NLHPC, ECM-02).

Muestra la fuente de financiamiento declarada en la publicación.