Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1080/03081079.2023.2272036 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Based on an extension of Riemann sums, Moore and Yang have defined an integral notion for the context of continuous inclusion monotonic interval functions in which the limits of integration are real numbers. This integral notion generalizes the usual one for real-valued functions based on Riemann sums. In this paper we extend this approach by considering intervals as limits of integration and abolishing the inclusion monotonic restriction of the integrable interval functions. Also, such a new integration notion is used to define interval probability density functions and use it in interval probability distribution functions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bedregal, Benjamin | Hombre |
Universidade Federal do Rio Grande do Norte - Brasil
Universidade do Estado do Rio de Janeiro - Brasil Univ Fed Rio Grande do Norte - Brasil Univ Estado Rio de Janeiro - Brasil |
| 2 | da Costa, C. G. | - |
Universidade Federal da Paraíba - Brasil
Univ Fed Paraiba - Brasil |
| 3 | Palmeira, E. | - |
Universidade Estadual de Santa Cruz - Brasil
Univ Estadual Santa Cruz - Brasil |
| 4 | Mansilla, Edmundo | Hombre |
Universidad de Magallanes - Chile
|
| 5 | Bedregal, Benjamin | Hombre |
Universidade Federal do Rio Grande do Norte - Brasil
Universidade do Estado do Rio de Janeiro - Brasil Univ Fed Rio Grande do Norte - Brasil Univ Estado Rio de Janeiro - Brasil |
| Fuente |
|---|
| Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| Brazilian National Council for Scientific and Technological Development (CNPQ) |
| Agradecimiento |
|---|
| This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) under Project 311429/2020-3 |
| This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) under Project 311429/2020-3. |