Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper describes our approaches to solving the MentalRiskES task, which belongs to the IberLEF (Iberian Languages Evaluation Forum) shared task. The task aims to identify the eating disorders and depression of a user using a series of Telegram messages. Our proposed system uses the traditional TFiDF method to represent the messages and then utilizes these representations as input for machine learning models. The best results for classification were obtained using the Naive Bayes classifier, while in the regression task, the best models were Gradient Boots Regressor and Linear Regressor. Despite its simplicity, we demonstrated that our traditional approaches can still achieve competitive results in recent NLP tasks, obtaining the best results in the case of detecting depression and eating disorders.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Guerra, Rodrigo | - |
Universidad de Chile - Chile
|
| 2 | Pizarro, Benjamín | - |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | Muñoz-Castro, Carlos | - |
Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Inteligencia Artificial (CENIA) - Chile Instituto Milenio Fundamentos de los Datos - Chile |
| 4 | Carvallo, Andres | Hombre |
Centro Nacional de Inteligencia Artificial (CENIA) - Chile
|
| 5 | ROJAS-VALENZUELA, MATIAS ISMAEL | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 6 | Aracena, Claudio | Hombre |
Universidad de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile |
| 7 | Dunstan, Jocelyn | Mujer |
Universidad de Chile - Chile
Pontificia Universidad Católica de Chile - Chile Instituto Milenio Fundamentos de los Datos - Chile |
| Fuente |
|---|
| FONDEQUIP |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Austral de Chile |
| IMFD |
| Agencia Nacional de Investigación y Desarrollo |
| CENIA |
| Carlos Muñoz-Castro |
| Agradecimiento |
|---|
| This work was funded by ANID Chile: Basal Funds for Center of Excellence FB210017 (CENIA), FB210005 (CMM); Millennium Science Initiative Program ICN17_002 (IMFD) and ICN2021_004 (iHealth), Fondecyt grant 11201250, and National Doctoral Scholarships 21211659 (Claudio Aracena) and 21221155 (Carlos Muñoz-Castro). This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02) and the Patagón supercomputer of Universidad Austral de Chile (FONDEQUIP EQM180042). |