Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Relation extraction is an essential component of Natural Language Processing (NLP) and significantly influences information retrieval and structured information extraction. Within clinical notes, the task is needed to establish connections among illnesses, therapies, indications, and other medical concepts. Motivated by the above, in this work, we propose a two-step model approach for entity linking; in the first step, we solve entity recognition, and in the second, a relation classification approach. We evaluated our approach in a Spanish corpus of the TESTLINK challenge in IberLEF2023 (Iberian Languages Evaluation Forum), comprising 81 clinical notes to train and 80 clinical notes to test. Our results show competitive performance with a precision of 0.47, recall of 0.43, and F1-score of 0.45, presenting an effective strategy for relation extraction from clinical notes in Spanish.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Muñoz-Castro, Carlos | - |
Centro Nacional de Inteligencia Artificial (CENIA) - Chile
Pontificia Universidad Católica de Chile - Chile Instituto Milenio Fundamentos de los Datos - Chile |
| 2 | Carvallo, Andrés | - |
Centro Nacional de Inteligencia Artificial (CENIA) - Chile
|
| 3 | Rojas, Matías | - |
Pontificia Universidad Católica de Chile - Chile
|
| 4 | Aracena, Claudio | - |
Universidad de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile |
| 5 | Guerra, Rodrigo | - |
Universidad de Chile - Chile
|
| 6 | Pizarro, Benjamín | - |
Pontificia Universidad Católica de Chile - Chile
|
| 7 | Dunstan, Jocelyn | - |
Pontificia Universidad Católica de Chile - Chile
Universidad de Chile - Chile Instituto Milenio Fundamentos de los Datos - Chile |
| Fuente |
|---|
| FONDEQUIP |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Austral de Chile |
| IMFD |
| Agencia Nacional de Investigación y Desarrollo |
| CENIA |
| Carlos Muñoz-Castro |
| Agradecimiento |
|---|
| This work was funded by ANID Chile: Basal Funds for Center of Excellence FB210017 (CENIA), FB210005 (CMM); Millennium Science Initiative Program ICN17_002 (IMFD) and ICN2021_004 (iHealth), Fondecyt grant 11201250, and National Doctoral Scholarships 21211659 (Claudio Aracena) and 21221155 (Carlos Muñoz-Castro). This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02) and the Patagón supercomputer of Universidad Austral de Chile (FONDEQUIP EQM180042). |