Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.TRIP.2023.100947 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Demand estimation and forecasting is an essential step in urban passenger transport planning. Relating the factors that influence the modal choice behavior of individuals facilitates demand estimation. In this study, we develop machine learning models that consider individuals' demographic, socioeconomic, and travel characteristics to justify their mode choice. Two datasets are used to train and validate the models. We use logistic regression and multilayer perceptron models to classify public or private transportation trips. It was observed that a multilayer perceptron model with a low number of parameters could predict modal selection with an accuracy exceeding 90%. We derive an algebraic equation from this result to perform modal selection prediction. Our results show that the models can effectively predict the mode of transportation of individuals based on their demographic and travel characteristics.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Leal, José E. | - |
Pontifícia Universidade Católica do Rio de Janeiro - Brasil
Pontifical Catholic Univ Rio de Janeiro - Brasil |
| 2 | Parada, Victor | Hombre |
Universidad de Santiago de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile |
| Fuente |
|---|
| National Council for Scientific and Technological Development (CNPq) |
| Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| Universidad de Santiago de Chile |
| Agencia Nacional de Investigación y Desarrollo |
| ANID PIA/PUENTE |
| Sabbatical Project, USACH |
| Agradecimiento |
|---|
| The first author thanks the National Council for Scientific and Technological Development (CNPq) for the financial support that allowed this research. The second author gratefully acknowledges financial support from ANID PIA/PUENTE AFB220003 and Sabbatical Project, USACH, 2022-2023. |
| The first author thanks the National Council for Scientific and Technological Development (CNPq) for the financial support that allowed this research. The second author gratefully acknowledges financial support from ANID PIA/PUENTE AFB220003 and Sabbatical Project, USACH, 2022-2023. |