Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A machine learning approach for slow slip event detection using GNSS time-series
Indexado
WoS WOS:001111433900001
Scopus SCOPUS_ID:85176089447
DOI 10.1016/J.JSAMES.2023.104680
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Extracting tectonic transient displacements on the Earth's surface from Global Navigation Satellite System (GNSS) time series remains a challenge, because GNSS station displacements depend on multiple processes occurring simultaneously, along with noise that obscures low-magnitude transient signals. We present a novel method for automatic detection of slow slip events (SSEs) in time series of a GNSS network by training a supervised machine learning (ML) model for classification. The proposed methodology detects both temporally and spatially the signatures of SSEs or regional transients within a GNSS network. The time series of a GNSS network were transformed into grayscale images, from which descriptors, including Bag of Visual Words (BoW) and Extended Local Binary Patterns (ELBP), were extracted. These descriptors served as input features for two distinct ML models: Support Vector Machines (SVM) and Artificial Neural Networks (NN). To train and test the ML classification model, two 3-year synthetic datasets were generated, one with GNSS networks featuring slow slip events (SSEs) of varying location, duration, onset time, and magnitude, and the other without SSEs, resulting in positive and negative sets, respectively. For each GNSS network, an image was created by combining the east and north components of the time series, which have been previously detrended and common mode error filtered. Each image is further divided into sub-images corresponding to 60 days time windows, in order to temporarily detect the existence of a transient. For training and testing, the datasets were separated into 75% for training and 25% for testing, each with 50% positive and 50% negative cases. In the final step, we analyze the positively classified images, representing the time windows in which the classifier detected transients. Within each of these windows, we identify the network's time series with the highest velocity, indicating the stations and geographic area where the detected transients occurred. The test results demonstrate that both ML models achieved high performance using both ELBP and BoW descriptors as features. Finally, our ML models were validated on a real dataset with a transient signal recorded before the 2014 Iquique earthquake in Chile, and they effectively detected this anomalous signal. The proposed method can effectively detect transient signals related to SSEs with high accuracy, sensitivity, and specificity in both the test and instrumentally recorded datasets.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geosciences, Multidisciplinary
Scopus
Geology
Stratigraphy
Paleontology
Earth Surface Processes
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Donoso, Felipe Hombre Instituto Milenio de Oceanografía - Chile
Inst Milenio Oceanog - Chile
2 Yáñez, Vicente - Universidad de Concepción - Chile
3 Ortega-Culaciati, Francisco Hombre Universidad de Chile - Chile
4 MORENO-SWITT, MARCOS Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
NLHPC
Agencia Nacional de Investigación y Desarrollo
Chilean Agency for Research and Development
ANID project
Chilean Agency for Research and Development (ANID)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by the PIA-ACT192169 ANID Project, FONDECYT No. 1221507 Project, FONDECYT 1231684 Project and the Chilean Agency for Research and Development (ANID) , grant ICN12_019N . Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).
This work was supported by the PIA-ACT192169 ANID Project, FONDECYT No. 1221507 Project, FONDECYT 1231684 Project and the Chilean Agency for Research and Development (ANID), grant ICN12_019N. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Muestra la fuente de financiamiento declarada en la publicación.