Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/PRECEDE57319.2023.10174332 | ||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The accuracy and robustness of the prediction model are always critical issues in model predictive control (MPC). This is more serious in sensorless applications because there are more uncertain parameters in the control system. Extended Kalman filter (EKF) is known as one of the self-correction methods. It has been widely used in sensorless applications as the observer with the aim of speed estimation. In this research, a new prediction model based on EKF is proposed and studied. This study aims to investigate the effectiveness of the EKF-based prediction model in the presence of parameter mismatch in the sensorless application of the predictive method. The simulation results verify the validity of the proposed method.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Davari, S. Alireza | - |
Shahid Rajaee Teacher Training University - Iran
|
| 2 | Azadi, Shirin | - |
Universidad Nacional Andrés Bello - Chile
|
| 3 | Tarisciotti, Luca | - |
Universidad Nacional Andrés Bello - Chile
|
| 4 | Garcia, Cristian | - |
Universidad de Talca - Chile
|
| 5 | Zhang, Zhenbin | - |
Shandong University - China
|
| 6 | Wang, Fengxinag | - |
Fujian Institute of Research On the Structure of Matter Chinese Academy of Sciences - China
|
| 7 | Rodriguez, Jose | - |
Shahid Rajaee Teacher Training University - Iran
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agencia Nacional de Investigación y Desarrollo |