Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Impregnation of Medium-Density Fiberboard Residues with Phase Change Materials for Efficient Thermal Energy Storage
Indexado
WoS WOS:001107851500001
Scopus SCOPUS_ID:85178125175
DOI 10.3390/F14112175
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The wood-based panel industry generates a significant amount of solid residues in its production activities, including medium-density fiberboard (MDF) molding manufacturing. These residues consist of fine fibers measuring between 0.15 mm and 1.19 mm in length. A large proportion of them currently needs to be utilized, mainly due to the problem of excessive accumulation. They can be reused as raw material for manufacturing new products by adopting a circular economy approach. Their thermal properties can also be enhanced by impregnating them with phase change materials (PCMs). This research aims to develop a process for impregnating MDF panel residues (R) with PCMs to obtain shape-stabilized compounds capable of storing thermal energy. Three different commercially available PCMs were used. They were incorporated in the MDF residues by vacuum impregnation. The morphology, chemical structure, thermal stability, and phase change properties of the compounds obtained were studied by scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), respectively. The SEM images indicated the PCM filled the empty spaces in the porous surface of the residue fibers to form shape-stabilized compounds. The FTIR spectrometry results indicated the compounds still exhibited characteristic peaks corresponding to both the MDF residues and the PCMs. No chemical reaction was observed between the two components. Moreover, according to the TGA results, the compounds produced exhibit high thermal stability. The R+PCM1 compound had the highest latent heat capacity of all the compounds developed in this study, reaching a maximum of 57.8 J⋅g−1, and a phase change temperature comparable to that of PCM1. This better thermal performance could be attributed to the compounds having a higher encapsulation ratio (31.4%) than the other compounds developed. Furthermore, the R+PCM1 compound had an absorption capacity of 142.8%. This study, therefore, unveiled a promising alternative for storing thermal energy and valorizing solid MDF residues.

Revista



Revista ISSN
Forests 1999-4907

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Forestry
Scopus
Forestry
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Rodríguez, Gustavo E. - Universidad del Bío Bío - Chile
2 BUSTOS-AVILA, CECILIA DEL CARMEN Mujer Universidad del Bío Bío - Chile
3 Romero, Romina Mujer Universidad de Concepción - Chile
4 Cloutier, Alain Hombre Université Laval - Canadá
UNIV LAVAL - Canadá

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad del Bío Bío (UBB) project on innovation and development
UBB project on innovation and development
UBB's Center for Biomaterials
Universidad del Bo Bo (UBB)
UBB's Doctoral Scholarship and Research Grant

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by an internal Universidad del Bío Bío (UBB) project on innovation and development (Code I+D 22-48).
This research was funded by an internal Universidad del Bío Bío (UBB) project on innovation and development (Code I+D 22-48).
The authors would like to acknowledge UBB's Center for Biomaterials and Nanotechnology for allowing them to use its laboratories and equipment. The authors would also like to thank UBB's Doctoral Scholarship and Research Grant and the team of the internal UBB project on innovation and development (Code: I+D 22-48).

Muestra la fuente de financiamiento declarada en la publicación.