Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The prognostic of events, and particularly of failures, is a key step towards allowing preventive decision-making, as in the case of predictive maintenance in Industry 4.0. However, the occurrence time of a future event is subject to uncertainty, and is typically modelled as a random variable. In this regard, the default procedure (benchmark) to compute its probability distribution is empirical, through Monte Carlo simulations. Nonetheless, the analytic expression for the probability distribution of the first occurrence time of any future event was presented and demonstrated in a recent publication. In this article it is established a direct relationship between these empirical and analytical procedures. It is shown that Monte Carlo simulations numerically approximate this analytically known probability measure when the future event is triggered by the crossing of a threshold.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Acuña-Ureta, David E. | - |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Orchard, Marcos E. | - |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| AC3E |
| Office of Naval Research |
| Agencia Nacional de Investigación y Desarrollo |
| Agradecimiento |
|---|
| This work has been partially supported by Office of Naval Research Global (ONRG) Grant Nr. N62909-22-1-2056, FONDECYT Chile Grant Nr. 11231148, FONDECYT Chile Grant Nr. 1210031, and the Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project FB0008, ANID. |