Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1088/2057-1976/AD0BB3 | ||||
| Año | 2024 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Anatomical segmentations generated using artificial intelligence (AI) have the potential to significantly improve video fluoroscopic swallow study (VFS) analysis. AI segments allow for various metrics to be determined without additional time constraints streamlining and creating new opportunities for analysis. While the opportunity is vast, it is important to understand the challenges and limitations of the underlying AI task. This work evaluates a bolus segmentation network. The first swallow of thin or liquid bolus from 80 unique patients were manually contoured from bolus first seen in the oral cavity to end of swallow motion. The data was split into a 75/25 training and validation set and a 4-fold cross validation was done. A U—Net architecture along with variations were tested with the dice coefficient as the loss function and overall performance metric. The average validation set resulted in a dice coefficient of 0.67. Additional analysis to characterize the variability of images and performance on sub intervals was conducted indicating high variability among the processes required for training the network. It was found that bolus in the oral cavity consistently degrades performance due to misclassification of teeth and unimportant residue. The dice coefficients dependence on structure size can have substantial effects on the reported value. This work shows the efficacy of bolus segmentation and identifies key areas that are detriments to the performance of the network.
| WOS |
|---|
| Radiology, Nuclear Medicine & Medical Imaging |
| Scopus |
|---|
| Computer Science Applications |
| Biomedical Engineering |
| Radiology, Nuclear Medicine And Imaging |
| Biomaterials |
| Biophysics |
| Physiology |
| Nursing (All) |
| Health Informatics |
| Bioengineering |
| SciELO |
|---|
| Sin Disciplinas |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Shaheen, Nadeem | - |
University of Wisconsin-Madison - Estados Unidos
UNIV WISCONSIN - Estados Unidos University of Wisconsin School of Medicine and Public Health - Estados Unidos |
| 2 | Burdick, Ryan | - |
University of Wisconsin-Madison - Estados Unidos
William S. Middleton Memorial Veterans Hospital - Estados Unidos UNIV WISCONSIN - Estados Unidos William S Middleton Mem Vet Adm Med Ctr - Estados Unidos |
| 3 | Peña-Chávez, Rodolfo | - |
University of Wisconsin-Madison - Estados Unidos
Universidad del Bío Bío - Chile UNIV WISCONSIN - Estados Unidos |
| 4 | Ulmschneider, Christopher | - |
University of Wisconsin-Madison - Estados Unidos
UNIV WISCONSIN - Estados Unidos University of Wisconsin School of Medicine and Public Health - Estados Unidos |
| 5 | Yee, Joanne | - |
William S. Middleton Memorial Veterans Hospital - Estados Unidos
University of Wisconsin-Madison - Estados Unidos William S Middleton Mem Vet Adm Med Ctr - Estados Unidos UNIV WISCONSIN - Estados Unidos University of Wisconsin School of Medicine and Public Health - Estados Unidos |
| 6 | Kurosu, Atsuko | Mujer |
University of Wisconsin-Madison - Estados Unidos
UNIV WISCONSIN - Estados Unidos University of Wisconsin School of Medicine and Public Health - Estados Unidos |
| 7 | Rogus-Pulia, Nicole M. | Mujer |
University of Wisconsin-Madison - Estados Unidos
William S. Middleton Memorial Veterans Hospital - Estados Unidos UNIV WISCONSIN - Estados Unidos William S Middleton Mem Vet Adm Med Ctr - Estados Unidos University of Wisconsin School of Medicine and Public Health - Estados Unidos |
| 8 | Bednarz, Bryan | - |
University of Wisconsin-Madison - Estados Unidos
UNIV WISCONSIN - Estados Unidos University of Wisconsin School of Medicine and Public Health - Estados Unidos |