Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Use of deep learning to segment bolus during videofluoroscopic swallow studies
Indexado
WoS WOS:001118330600001
Scopus SCOPUS_ID:85178545160
DOI 10.1088/2057-1976/AD0BB3
Año 2024
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Anatomical segmentations generated using artificial intelligence (AI) have the potential to significantly improve video fluoroscopic swallow study (VFS) analysis. AI segments allow for various metrics to be determined without additional time constraints streamlining and creating new opportunities for analysis. While the opportunity is vast, it is important to understand the challenges and limitations of the underlying AI task. This work evaluates a bolus segmentation network. The first swallow of thin or liquid bolus from 80 unique patients were manually contoured from bolus first seen in the oral cavity to end of swallow motion. The data was split into a 75/25 training and validation set and a 4-fold cross validation was done. A U—Net architecture along with variations were tested with the dice coefficient as the loss function and overall performance metric. The average validation set resulted in a dice coefficient of 0.67. Additional analysis to characterize the variability of images and performance on sub intervals was conducted indicating high variability among the processes required for training the network. It was found that bolus in the oral cavity consistently degrades performance due to misclassification of teeth and unimportant residue. The dice coefficients dependence on structure size can have substantial effects on the reported value. This work shows the efficacy of bolus segmentation and identifies key areas that are detriments to the performance of the network.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Radiology, Nuclear Medicine & Medical Imaging
Scopus
Computer Science Applications
Biomedical Engineering
Radiology, Nuclear Medicine And Imaging
Biomaterials
Biophysics
Physiology
Nursing (All)
Health Informatics
Bioengineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Shaheen, Nadeem - University of Wisconsin-Madison - Estados Unidos
UNIV WISCONSIN - Estados Unidos
University of Wisconsin School of Medicine and Public Health - Estados Unidos
2 Burdick, Ryan - University of Wisconsin-Madison - Estados Unidos
William S. Middleton Memorial Veterans Hospital - Estados Unidos
UNIV WISCONSIN - Estados Unidos
William S Middleton Mem Vet Adm Med Ctr - Estados Unidos
3 Peña-Chávez, Rodolfo - University of Wisconsin-Madison - Estados Unidos
Universidad del Bío Bío - Chile
UNIV WISCONSIN - Estados Unidos
4 Ulmschneider, Christopher - University of Wisconsin-Madison - Estados Unidos
UNIV WISCONSIN - Estados Unidos
University of Wisconsin School of Medicine and Public Health - Estados Unidos
5 Yee, Joanne - William S. Middleton Memorial Veterans Hospital - Estados Unidos
University of Wisconsin-Madison - Estados Unidos
William S Middleton Mem Vet Adm Med Ctr - Estados Unidos
UNIV WISCONSIN - Estados Unidos
University of Wisconsin School of Medicine and Public Health - Estados Unidos
6 Kurosu, Atsuko Mujer University of Wisconsin-Madison - Estados Unidos
UNIV WISCONSIN - Estados Unidos
University of Wisconsin School of Medicine and Public Health - Estados Unidos
7 Rogus-Pulia, Nicole M. Mujer University of Wisconsin-Madison - Estados Unidos
William S. Middleton Memorial Veterans Hospital - Estados Unidos
UNIV WISCONSIN - Estados Unidos
William S Middleton Mem Vet Adm Med Ctr - Estados Unidos
University of Wisconsin School of Medicine and Public Health - Estados Unidos
8 Bednarz, Bryan - University of Wisconsin-Madison - Estados Unidos
UNIV WISCONSIN - Estados Unidos
University of Wisconsin School of Medicine and Public Health - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Development and Validation of an Artificial Intelligence-Based Clinical Decision Support Tool for Videofluoroscopic Swallowing Studies

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
No Statement Available

Muestra la fuente de financiamiento declarada en la publicación.