Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1515/PHYS-2018-0029 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
New additional conditions required for the uniqueness of the 2D elastostatic problems formulated in terms of potential functions for the derived Papkovich-Neuber representations, are studied. Two cases are considered, each of them formulated by the scalar potential function plus one of the rectangular non-zero components of the vector potential function. For these formulations, in addition to the original (physical) boundary conditions, two new additional conditions are required. In addition, for the complete Papkovich-Neuber formulation, expressed by the scalar potential plus two components of the vector potential, the additional conditions established previously for the three-dimensional case in z-convex domain can be applied. To show the usefulness of these new conditions in a numerical scheme two applications are numerically solved by the network method for the three cases of potential formulations.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Morales Guerrero, Jose Luis | Hombre |
Univ Politecn Cartagena UPCT - España
Universidad Politécnica de Cartagena - España |
| 1 | Guerrero, José Luis Morales | Hombre |
Universidad Politécnica de Cartagena - España
|
| 2 | CANOVAS-VIDAL, MANUEL | Hombre |
Universidad Católica del Norte - Chile
|
| 2 | Vidal, Manuel Cánovas | Hombre |
Universidad Católica del Norte - Chile
|
| 3 | Moreno, J. A. | Hombre |
Univ Politecn Cartagena - España
Universidad Politécnica de Cartagena - España |
| 3 | Nicolás, José Andrés Moreno | Hombre |
Universidad Politécnica de Cartagena - España
|
| 4 | Lopez, Francisco Alhama | Hombre |
Univ Politecn Cartagena - España
Universidad Politécnica de Cartagena - España |