Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Effect of particle size of nanoscale zero–valent copper on inorganic phosphorus adsorption–desorption in a volcanic ash soil
Indexado
Scopus SCOPUS_ID:85168429187
DOI 10.1016/J.CHEMOSPHERE.2023.139836
Año 2023
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Zero–valent copper engineered nanoparticles (Cu–ENPs) released through unintentional or intentional actions into the agricultural soils can alter the availability of inorganic phosphorus (IP) to plants. In this study, we used adsorption–desorption experiments to evaluate the effect of particle size of 1% Cu–ENPs (25 nm and 40–60 nm) on IP availability in Santa Barbara (SB) volcanic ash soil. X–Ray Diffraction results showed that Cu–ENPs were formed by a mixture of Cu metallic and Cu oxides (Cu2O or/and CuO) species, while specific surface area values showed that Cu–ENPs/25 nm could form larger aggregate particles compared to Cu–ENPs/40–60 nm. The kinetic IP adsorption of SB soil without and with 1% Cu–ENPs (25 nm and 40–60 nm) followed the mechanism described by the pseudo–second–order (k2 = 0.45–1.13 x 10−3 kg mmol−1 min−1; r2 ≥ 0.999, and RSS ≤ 0.091) and Elovich (α = 14621.10–3136.20 mmol kg−1 min−1; r2 ≥ 0.984, and RSS ≤ 69) models. Thus, the rate–limiting step for IP adsorption in the studied systems was chemisorption on a heterogeneous surface. Adsorption equilibrium isotherms without Cu–ENPs were fitted well to the Freundlich model, while with 1% Cu–ENPs (25 nm and 40–60 nm), isotherms were described best by the Freundlich and/or Langmuir model. The IP relative adsorption capacity (KF) was higher with 1% Cu–ENPs/40–60 nm (KF = 110.41) than for 1% Cu–ENPs/25 nm (KF = 74.40) and for SB soil (KF = 48.17). This study showed that plausible IP retention mechanisms in the presence of 1% Cu–ENPs in SB soil were: i) ligand exchange, ii) electrostatic attraction, and iii) co–precipitate formation. The desorption study demonstrated that 1% Cu–ENPs/40–60 nm increased the affinity of IP in SB soil with a greater effect than 1% Cu–ENPs/25 nm. Thus, both the studied size ranges of Cu–ENPs could favor an accumulation of IP in volcanic ash soils.

Revista



Revista ISSN
Chemosphere 0045-6535

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Environmental Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Suazo-Hernandez, Jonathan Hombre Universidad de La Frontera - Chile
2 Urdiales, C. Hombre Universidad de Chile - Chile
Universidad de Atacama - Chile
3 Poblete-Grant, Patricia Mujer Universidad de La Frontera - Chile
4 Pesenti, H. Hombre Universidad Católica de Temuco - Chile
Afro-American University of Central Africa (AAUCA) - Guinea Ecuatorial
5 Caceres-Jensen, Lizethly - Universidad Metropolitana de Ciencias de la Educación - Chile
6 Sarkar, Binoy - University of South Australia - Australia
7 Bolan, Nanthi - The University of Western Australia - Australia
8 de la Luz Mora, María Mujer Universidad de La Frontera - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDEQUIP
Universidad de La Frontera
Fondo Nacional de Desarrollo Científico y Tecnológico
ANID Fondecyt
Agencia Nacional de Investigación y Desarrollo
Soil and Plant Laboratory of Universidad de La Frontera
Post-Doctoral
Laboratory of Crystallographic
UCTemuco

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This study is funded by ANID- FONDECYT /Post-Doctoral Grant N° 3230179 . The authors convey special thanks to Technological Bioresource Nucleus (BIOREN-UFRO), Soil and Plant Laboratory of Universidad de La Frontera, and Laboratory of Crystallographic studies, UCTemuco, ANID Proyecto FONDEQUIP EQM160152. This work was partially funded by the Research Directorate of Universidad de La Frontera . Cristian Urdiales acknowledges the support of the ANID FONDECYT /Post-Doctoral Grant N° 3220201 . Patricia Poblete-Grant acknowledges the ANID FONDECYT /Post-Doctoral Grant N° 3210228 . Lizethly Cáceres-Jensen acknowledges the FONDECYT REGULAR N° 1221634 .
This study is funded by ANID- FONDECYT /Post-Doctoral Grant N° 3230179 . The authors convey special thanks to Technological Bioresource Nucleus (BIOREN-UFRO), Soil and Plant Laboratory of Universidad de La Frontera, and Laboratory of Crystallographic studies, UCTemuco, ANID Proyecto FONDEQUIP EQM160152. This work was partially funded by the Research Directorate of Universidad de La Frontera . Cristian Urdiales acknowledges the support of the ANID FONDECYT /Post-Doctoral Grant N° 3220201 . Patricia Poblete-Grant acknowledges the ANID FONDECYT /Post-Doctoral Grant N° 3210228 . Lizethly Cáceres-Jensen acknowledges the FONDECYT REGULAR N° 1221634 .

Muestra la fuente de financiamiento declarada en la publicación.