Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Inhibition of Ezh2 redistributes bivalent domains within transcriptional regulators associated with WNT and Hedgehog pathways in osteoblasts
Indexado
Scopus SCOPUS_ID:85170532678
DOI 10.1016/J.JBC.2023.105155
Año 2023
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Bivalent epigenomic regulatory domains containing both activating histone 3 lysine 4 (H3K4me3) and repressive lysine 27 (H3K27me3) trimethylation are associated with key developmental genes. These bivalent domains repress transcription in the absence of differentiation signals but maintain regulatory genes in a poised state to allow for timely activation. Previous studies demonstrated that enhancer of zeste homolog 2 (Ezh2), a histone 3 lysine 27 (H3K27) methyltransferase, suppresses osteogenic differentiation and that inhibition of Ezh2 enhances commitment of osteoblast progenitors in vitro and bone formation in vivo. Here, we examined the mechanistic effects of Tazemetostat (EPZ6438), an Food and Drug Administration approved Ezh2 inhibitor for epithelioid sarcoma treatment, because this drug could potentially be repurposed to stimulate osteogenesis for clinical indications. We find that Tazemetostat reduces H3K27me3 marks in bivalent domains in enhancers required for bone formation and stimulates maturation of MC3T3 preosteoblasts. Furthermore, Tazemetostat activates bivalent genes associated with the Wingless/integrated (WNT), adenylyl cyclase (cAMP), and Hedgehog (Hh) signaling pathways based on transcriptomic (RNA-seq) and epigenomic (chromatin immunoprecipitation [ChIP]-seq) data. Functional analyses using selective pathway inhibitors and silencing RNAs demonstrate that the WNT and Hh pathways modulate osteogenic differentiation after Ezh2 inhibition. Strikingly, we show that loss of the Hh-responsive transcriptional regulator Gli1, but not Gli2, synergizes with Tazemetostat to accelerate osteoblast differentiation. These studies establish epigenetic cooperativity of Ezh2, Hh-Gli1 signaling, and bivalent regulatory genes in suppressing osteogenesis. Our findings may have important translational ramifications for anabolic applications requiring bone mass accrual and/or reversal of bone loss.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biochemistry & Molecular Biology
Scopus
Molecular Biology
Biochemistry
Cell Biology
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Carrasco, Margarita E. - Mayo Clinic - Estados Unidos
2 Thaler, Roman Hombre Mayo Clinic - Estados Unidos
3 Nardocci, Gino Hombre Universidad de Los Andes, Chile - Chile
IMPACT - Chile
4 Dudakovic, Amel Hombre Mayo Clinic - Estados Unidos
Mayo Clinic Graduate School of Biomedical Sciences - Estados Unidos
5 van Wijnen, Andre J. Hombre The University of Vermont - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
National Institutes of Health
Mayo Clinic
Agencia Nacional de Investigación y Desarrollo
University of Vermont
Basal funding for Scientific and Technological Center of Excellence
IMPACT

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by National Institutes of Health grants R01 AR049069 (A. J. v. W.) and Career Development Award in Orthopedics Research (A. D.), and ANID / CONICYT - FONDECYT 11190998 and ANID - Basal funding for Scientific and Technological Center of Excellence, IMPACT, FB210024 (G. N.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
We thank current and past members of our laboratories, including Liz Galvan and Christopher R. Paradise, for sharing ideas and reagents. We acknowledge the support from our long-term collaborators Jennifer J. Westendorf (Mayo Clinic) and Gary Stein (University of Vermont). We also appreciate the expertise of Asha Nair from the Bioinformatics Core and Medical Genome Facility at Mayo Clinic. We also appreciate the generous philanthropic support of William H. and Karen J. Eby and the charitable foundation in their names.
This work was supported by National Institutes of Health grants R01 AR049069 (A. J. v. W.) and Career Development Award in Orthopedics Research (A. D.), and ANID / CONICYT - FONDECYT 11190998 and ANID - Basal funding for Scientific and Technological Center of Excellence, IMPACT, FB210024 (G. N.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Muestra la fuente de financiamiento declarada en la publicación.