Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Fitness-for-Duty Classification using Temporal Sequences of Iris Periocular images
Indexado
WoS WOS:001031740700005
Scopus SCOPUS_ID:85165701058
DOI 10.1109/IWBF57495.2023.10157018
Año 2023
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Fitness for Duty (FFD) techniques detects whether a subject is Fit to perform their work safely, which means no reduced alertness condition and security, or if they are Unfit, which means alertness condition reduced by sleepiness or consumption of alcohol and drugs. Human iris behaviour provides valuable information to predict FFD since pupil and iris movements are controlled by the central nervous system and are influenced by illumination, fatigue, alcohol, and drugs. This work aims to classify FFD using sequences of 8 iris images and to extract spatial and temporal information using Convolutional Neural Networks (CNN) and Long Short Term Memory Networks (LSTM). Our results achieved a precision of 81.4% and 96.9% for the prediction of Fit and Unfit subjects, respectively. The results also show that it is possible to determine if a subject is under alcohol, drug, and sleepiness conditions. Sleepiness can be identified as the most difficult condition to be determined. This system opens a different insight into iris biometric applications.

Revista



Revista ISSN
979-8-3503-3607-8

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Zurita, Pamela C. Mujer TOC R&D Center - Chile
TOC R&D Ctr - Chile
2 Benalcazar, Daniel P. Hombre Universidad de Chile - Chile
3 TAPIA-FARIAS, JUAN EDUARDO Hombre Hochschule Darmstadt - Alemania
Hsch Darmstadt - Alemania
4 IEEE Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
German Federal Ministry of Education and Research
Bundesministerium für Bildung und Forschung
National Research Center for Applied Cybersecurity ATHENE
Hessian Ministry of Higher Education, Research, Science and the Arts
Hessian Ministry of Higher Education, Research, Science and the Arts within National Research Center for Applied Cybersecurity ATHENE
Hessian Ministry of Higher Education, Research, Science and the Arts within TOC Biometrics

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work is supported by the German Federal Ministry of Education and Research and the Hessian Ministry of Higher Education, Research, Science and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE and TOC Biometrics.
This work is supported by the German Federal Ministry of Education and Research and the Hessian Ministry of Higher Education, Research, Science and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE and TOC Biometrics.

Muestra la fuente de financiamiento declarada en la publicación.