Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1142/S0218202523500483 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this work, we have designed conforming and nonconforming virtual element methods (VEM) to approximate non-stationary nonlocal biharmonic equation on general shaped domain. By employing Faedo-Galerkin technique, we have proved the existence and uniqueness of the continuous weak formulation. Upon applying Brouwer's fixed point theorem, the well-posedness of the fully discrete scheme is derived. Further, following [J. Huang and Y. Yu, A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations, J. Comput. Appl. Math. 386 (2021) 113229], we have introduced Enrichment operator and derived a priori error estimates for fully discrete schemes on polygonal domains, not necessarily convex. The proposed error estimates are justified with some benchmark examples.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Adak, Dibyendu | - |
Universidad del Bío Bío - Chile
|
| 2 | ANAYA-DOMINGUEZ, VERONICA | Mujer |
Universidad del Bío Bío - Chile
Universidad de Concepción - Chile |
| 3 | Bendahmane, Mostafa | Hombre |
Univ Bordeaux - Francia
Institut de Mathématiques de Bordeaux - Francia |
| 4 | MORA-HERRERA, DAVID ANDRES | Hombre |
Universidad del Bío Bío - Chile
Universidad de Concepción - Chile |
| Fuente |
|---|
| Universidad del Bío-Bío |
| Centro de Modelamiento Matematico (CMM) |
| Basal Funds for Centers of Excellence |
| ECOS-ANID |
| ANID-Chile |
| DICREA |
| Agradecimiento |
|---|
| This work was partially supported by DICREA through project 2120173 GI/C, Universidad del Bio-Bio, by ANID-Chile through projects FONDECYT 1211265, FONDECYT 1220881, FONDECYT Postdoctorado 3200242, and by project Centro de Modelamiento Matematico (CMM), FB210005, BASAL funds for centers of excellence and by project ECOS-ANID ECOS200038-C20E05. The authors are deeply grateful to Jesus Vellojin, Universidad del Bio-Bio, Chile, for the fruitful discussions in implementation of Morley FEM. |