Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Experimental investigation of damage evolution and fracture mechanism in rocks with a single flaw under stepwise cyclic compression
Indexado
WoS WOS:001040346100001
Scopus SCOPUS_ID:85166345970
DOI 10.1007/S10064-023-03354-6
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This study comprehensively investigates the damage and fracturing behaviors of sandstone specimens containing a single flaw under stepwise cyclic loading using digital image correlation (DIC) and acoustic emission (AE) techniques. The degradation of rocks is characterized by the evolution of residual strain, energy density, and cracking behaviors of flawed specimens while considering the effect of flaw inclination angle on the mechanical properties and fracturing behaviors of rocks. Experimental results reveal that residual strain gradually increases with an increasing number of cycles, and the increase in stress level induces a sudden rise in both elastic and dissipated energy density. The dissipation factor decreases initially and then reaches a constant value as the upper-stress limit increases. Moreover, the energy dissipation behavior becomes more consistent among the five cycles as the stress levels increase. Tensile wing cracks propagate stably during the stepwise cyclic loading process, accompanied by scattered low-amplitude AE events and a linear increase in cumulative AE counts. The analysis of normal and shear displacements indicates that wing cracks are primarily tensile, with significant normal opening displacements and negligible shear displacements. Horsetail cracks and anti-wing cracks initiate within fan-shaped strain zones of great size, driven by high compressive-shear stress, and rapidly propagate in the last one or two stress levels, leading to the detection of abundant high-amplitude AE events. Horsetail cracks and anti-wing cracks exhibit comparable displacement jumps in both normal and tangential directions, suggesting a mixed tensile-shear mode of crack propagation.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geosciences, Multidisciplinary
Engineering, Geological
Engineering, Environmental
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Miao, Shuting - CASSACA - China
Univ Chinese Acad Sci - China
Wuhan Institute of Rock and Soil Mechanics Chinese Academy of Sciences - China
University of Chinese Academy of Sciences - China
2 Pan, Peng-Zhi - CASSACA - China
Univ Chinese Acad Sci - China
Wuhan Institute of Rock and Soil Mechanics Chinese Academy of Sciences - China
University of Chinese Academy of Sciences - China
3 Hekmatnejad, Amin Hombre Pontificia Universidad Católica de Valparaíso - Chile
4 Li, Yuxin - CASSACA - China
Univ Chinese Acad Sci - China
Wuhan Institute of Rock and Soil Mechanics Chinese Academy of Sciences - China
University of Chinese Academy of Sciences - China

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Natural Science Foundation of China
Innovative Research Group Project of the National Natural Science Foundation of China

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by National Natural Science Foundation of China (Grant No. 52125903).
This work was supported by National Natural Science Foundation of China (Grant No. 52125903).

Muestra la fuente de financiamiento declarada en la publicación.