Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10915-023-02300-8 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider frictional contact problems in small strain elasticity discretized with finite elements and Nitsche method. Both bilateral and unilateral contact problems are taken into account, as well as both Tresca and Coulomb friction models. We derive residual a posteriori error estimates for each friction model, following (Chouly et al., in IMA J Numer Anal 38: 921-954, 2018). For the incomplete variant of Nitsche, we prove an upper bound for the dual norm of the residual, for Tresca and Coulomb friction, without any extra regularity and without a saturation assumption. We prove also local lower bounds. Numerical experiments allow to assess the accuracy of the estimates and their interest for adaptive meshing in different situations.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ARAYA-DURAN, RODOLFO ANTONIO | Hombre |
Universidad de Concepción - Chile
|
| 2 | Chouly, F. | Hombre |
Univ Bourgogne - Francia
Universidad de Concepción - Chile Universidad de Chile - Chile Institut de Mathématiques de Bourgogne - Francia |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| EIPHI Graduate School |
| Center for Mathematical Modeling |
| Centro de Modelamiento Matematico |
| EIPHI |
| ANID-Chile |
| I-Site BFC project NAANoD |
| I-Site BFC |
| Center for Mathematical Modeling grant |
| Agradecimiento |
|---|
| The authors thank to the two anonymous referees for their comments that helped to improve the presentation of the results. R.A. was partially supported by ANID-Chile through the projects: Centro de Modelamiento Matematico (FB210005) of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal, and Fondecyt Regular No 1211649 F.C. work was partially supported by the I-Site BFC project NAANoD and the EIPHI Graduate School (contract ANR-17-EURE-0002). F.C. is grateful of the Center for Mathematical Modeling Grant FB20005. |
| The authors thank to the two anonymous referees for their comments that helped to improve the presentation of the results. R.A. was partially supported by ANID-Chile through the projects: Centro de Modelamiento Matemático (FB210005) of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, and Fondecyt Regular No 1211649 F.C. work was partially supported by the I-Site BFC project NAANoD and the EIPHI Graduate School (contract ANR-17-EURE-0002). F.C. is grateful of the Center for Mathematical Modeling Grant FB20005. |
| The authors thank to the two anonymous referees for their comments that helped to improve the presentation of the results. R.A. was partially supported by ANID-Chile through the projects: Centro de Modelamiento Matemático (FB210005) of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, and Fondecyt Regular No 1211649 F.C. work was partially supported by the I-Site BFC project NAANoD and the EIPHI Graduate School (contract ANR-17-EURE-0002). F.C. is grateful of the Center for Mathematical Modeling Grant FB20005. |