Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Depthwise convolutional neural network for multiband automatic quasars classification in ATLAS
Indexado
WoS WOS:001048643800001
Scopus SCOPUS_ID:85168695386
DOI 10.1093/MNRAS/STAD1859
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In recent years, the astronomical scientific community has made significant efforts to automate quasars' detection. Automatic classification of these objects is challenging since they are very distant and appear as point sources, outnumbered by other sources. Thus, performing automatic morphological classification is not straightforward; colour dimension seems better as a key concept. Previous work using machine learning tools has proposed classifiers that use features such as magnitude and colour, working only for quasar representation, which requires high-quality observational data that is not always available. Those features are computationally costly in extensive image surveys like VST ATLAS (Shanks et al. ). With the continuous developments in deep-learning architectures, we find a powerful tool to perform automatic classification from images, where capturing information from different bands takes relevance in this kind of approach. In this work, we developed a new quasar selection method that we hope to apply to the complete ATLAS survey in subsequent papers, where the completeness and efficiency of depthwise architecture will be compared to more standard methods such as selection on the colour-colour diagrams and machine-learning feature-based methods. This automatic quasar classification tool uses images in u, g, i, z bands available in ATLAS, heading towards new survey requirements facing the big data era. We propose a deep-learning architecture based on depthwise convolutional units that work directly with ATLAS images, reduced by the VST pipeline. Our model reaches an accuracy of 96.53 per cent with a quasar classification f1-score of 96.49 per cent, a very competitive benchmark compared to previous unscalable approaches.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Astronomy & Astrophysics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 San-Martin-Jimenez, Astrid E. - Pontificia Universidad Católica de Chile - Chile
Universidad Santo Tomás - Chile
2 Pichara, Karim E. Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio de Astrofísica - Chile
3 Barrientos, Luis Felipe - Pontificia Universidad Católica de Chile - Chile
4 Santos, W. A. Hombre Pontificia Universidad Católica de Chile - Chile
5 Moya-Sierralta, C. Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CONICYT-Chile
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
Proyecto Basal
Ministry for the Economy, Development, and Tourism's Millennium Science Initiative
CONICYT's PCI program
Ministry for the Economy, Development, and Tourism
Agencia Nacional de Investigación y Desarrollo
Department of Computer Science, Saarland University
Agencia Nacional de Investigacion y Desarrollo ANID BASAL
Computer Science Department at PUC Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
& nbsp;We acknowledge the support from CONICYT-Chile, through the FONDECYT Regular projects number 1180054. Additional support for this project is provided by the Ministry for the Economy, Development, and Tourism's Millennium Science Initiative through grant IC?120009, awarded to the Millennium Institute of Astrophysics (MAS); by Proyecto Basal PFB-06/2007; and by CONICYT's PCI program through grant DPI20140066. Also, this research is supported by the Computer Science Department at PUC Chile, through the Fond-DCC project.Luis Felipe Barrientos acknowledges the support from the Agencia Nacional de Investigacion y Desarrollo ANID BASAL project FB210003.
We acknowledge the support from CONICYT-Chile, through the FONDECYT Regular projects number 1180054. Additional support for this project is provided by the Ministry for the Economy, Development, and Tourism’s Millennium Science Initiative through grant IC 120009, awarded to the Millennium Institute of Astrophysics (MAS); by Proyecto Basal PFB-06/2007; and by CONICYT’s PCI program through grant DPI20140066. Also, this research is supported by the Computer Science Department at PUC Chile, through the Fond-DCC project.
We acknowledge the support from CONICYT-Chile, through the FONDECYT Regular projects number 1180054. Additional support for this project is provided by the Ministry for the Economy, Development, and Tourism’s Millennium Science Initiative through grant IC 120009, awarded to the Millennium Institute of Astrophysics (MAS); by Proyecto Basal PFB-06/2007; and by CONICYT’s PCI program through grant DPI20140066. Also, this research is supported by the Computer Science Department at PUC Chile, through the Fond-DCC project.

Muestra la fuente de financiamiento declarada en la publicación.