Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Classification of Alzheimer’s disease stages from magnetic resonance images using deep learning
Indexado
WoS WOS:001055183700002
Scopus SCOPUS_ID:85171256235
DOI 10.7717/PEERJ-CS.1490
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Alzheimer's disease (AD) is a progressive type of dementia characterized by loss of memory and other cognitive abilities, including speech. Since AD is a progressive disease, detection in the early stages is essential for the appropriate care of the patient throughout its development, going from asymptomatic to a stage known as mild cognitive impairment (MCI), and then progressing to dementia and severe dementia; is worth mentioning that everyone suffers from cognitive impairment to some degree as we age, but the relevant task here is to identify which people are most likely to develop AD. Along with cognitive tests, evaluation of the brain morphology is the primary tool for AD diagnosis, where atrophy and loss of volume of the frontotemporal lobe are common features in patients who suffer from the disease. Regarding medical imaging techniques, magnetic resonance imaging (MRI) scans are one of the methods used by specialists to assess brain morphology. Recently, with the rise of deep learning (DL) and its successful implementation in medical imaging applications, it is of growing interest in the research community to develop computer-aided diagnosis systems that can help physicians to detect this disease, especially in the early stages where macroscopic changes are not so easily identified. This article presents a DL-based approach to classifying MRI scans in the different stages of AD, using a curated set of images from Alzheimer's Disease Neuroimaging Initiative and Open Access Series of Imaging Studies databases. Our methodology involves image pre-processing using FreeSurfer, spatial data-augmentation operations, such as rotation, flip, and random zoom during training, and state-ofthe-art 3D convolutional neural networks such as EfficientNet, DenseNet, and a custom siamese network, as well as the relatively new approach of vision transformer architecture. With this approach, the best detection percentage among all four architectures was around 89% for AD vs. Control, 80% for Late MCI vs. Control, 66% for MCI vs. Control, and 67% for Early MCI vs. Control.

Revista



Revista ISSN
2376-5992

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Theory & Methods
Computer Science, Information Systems
Computer Science, Artificial Intelligence
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Mora-Rubio, Alejandro - Univ Autonoma Manizales - Colombia
Universidad Autónoma de Manizales - Colombia
2 Bravo-Ortiz, Mario Alejandro - Univ Autonoma Manizales - Colombia
Universidad Autónoma de Manizales - Colombia
3 Arredondo, Sebastian Quinones - Univ Autonoma Manizales - Colombia
Universidad Autónoma de Manizales - Colombia
4 Torres, Jose Manuel Saborit - Fdn Fomento Invest Sanitario & Biomed Comun Valenc - España
Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana - España
5 RUZ-HEREDIA, GONZALO ANDRES Hombre Centro de Ecología Aplicada y Sustentabilidad - Chile
Data Observ Fdn - Chile
Universidad Adolfo Ibáñez - Chile
Centro de Ecología Aplicada y Sustentabilidad (CAPES) - Chile
Data Observatory Foundation - Chile
Universidad Asdolfo Ibáñez - Chile
6 Tabares-Soto, Reinel - Univ Autonoma Manizales - Colombia
Universidad Adolfo Ibáñez - Chile
Univ Caldas - Colombia
Universidad Autónoma de Manizales - Colombia
Universidad Asdolfo Ibáñez - Chile
Universidad de Caldas - Colombia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Institutes of Health
Canadian Institutes of Health Research
National Institute on Aging
U.S. Department of Defense
University of Southern California
National Institute of Biomedical Imaging and Bioengineering
ANID PIA/BASAL
DOD ADNI
Alzheimer's Disease Neuroimaging Initiative
DOD ADNI (Department of Defense)
Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health)
Universidad Autónoma de Manizales
ANID/PIA/ANILLOS
Oportunidades de Mercado para las Empresas de Tecnología
Northern California Institute for Research and Education

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by the Universidad Autonoma de Manizales as part of the project "Deteccion de COVID-19 en imagenes de rayos X usando redes neuronales convolucionales" with code 699-106, and also to the projects "CH-T1246: Oportunidades de Mercado para las Empresas de Tecnologia-Compras Publicas de Algoritmos Responsables, Eticos y Transparentes", ANID PIA/BASAL FB0002, and ANID/PIA/ANILLOS ACT210096. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012) . ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & amp; Development, LLC.; Johnson & amp; Johnson Pharmaceutical Research & amp; Development LLC.; Lumosity; Lundbeck; Merck & amp; Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( www.fnih.org) . The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
This work was supported by the Universidad Autonoma de Manizales as part of the project “Detección de COVID-19 en imágenes de rayos X usando redes neuronales convolucionales” with code 699-106, and also to the projects “CH-T1246: Oportunidades de Mercado para las Empresas de Tecnología—Compras Públicas de Algoritmos Responsables, Éticos y Transparentes”, ANID PIA/BASAL FB0002, and ANID/PIA/ ANILLOS ACT210096. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Muestra la fuente de financiamiento declarada en la publicación.