Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/DIAGNOSTICS13172779 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This study aimed to develop a noninvasive Machine Learning (ML) model to identify clinically significant prostate cancer (csPCa) according to Gleason Score (GS) based on biparametric MRI (bpMRI) radiomic features and clinical information. Methods: This retrospective study included 86 adult Hispanic men (60 & PLUSMN; 8.2 years, median prostate-specific antigen density (PSA-D) 0.15 ng/mL2) with PCa who underwent prebiopsy 3T MRI followed by targeted MRI-ultrasound fusion and systematic biopsy. Two observers performed 2D segmentation of lesions in T2WI/ADC images. We classified csPCa (GS & GE; 7) vs. non-csPCa (GS = 6). Univariate statistical tests were performed for different parameters, including prostate volume (PV), PSA-D, PI-RADS, and radiomic features. Multivariate models were built using the automatic feature selection algorithm Recursive Feature Elimination (RFE) and different classifiers. A stratified split separated the train/test (80%) and validation (20%) sets. Results: Radiomic features derived from T2WI/ADC are associated with GS in patients with PCa. The best model found was multivariate, including image (T2WI/ADC) and clinical (PV and PSA-D) information. The validation area under the curve (AUC) was 0.80 for differentiating csPCa from non-csPCa, exhibiting better performance than PI-RADS (AUC: 0.71) and PSA-D (AUC: 0.78). Conclusion: Our multivariate ML model outperforms PI-RADS v2.1 and established clinical indicators like PSA-D in classifying csPCa accurately. This underscores MRI-derived radiomics' (T2WI/ADC) potential as a robust biomarker for assessing PCa aggressiveness in Hispanic patients.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Dominguez, Ignacio | - |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Rios-Ibacache, Odette | - |
Pontificia Universidad Católica de Chile - Chile
MCGILL UNIV - Canadá McGill Faculty of Medicine and Health Sciences - Canadá |
| 3 | CAPRILE-ETCHART, PAOLA FRANCISCA | Mujer |
Pontificia Universidad Católica de Chile - Chile
ANID - Chile |
| 4 | Gonzalez, Jose | - |
Pontificia Universidad Católica de Chile - Chile
|
| 5 | SAN FRANCISCO-REYES, IGNACIO FELIPE | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 6 | BESA-CORREA, CECILIA | Mujer |
Pontificia Universidad Católica de Chile - Chile
ANID - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agencia Nacional de Investigación y Desarrollo |
| Millennium Science Initiative Program |
| ANID Chile: FONDECYT |