Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Improving WAVEWATCH III hindcasts with machine learning
Indexado
WoS WOS:001068777100001
Scopus SCOPUS_ID:85168805757
DOI 10.1016/J.COASTALENG.2023.104381
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this paper, machine learning models are used to improve a wave hindcast database created using WAVEWATCH III & REG; (WW3) for the Chilean coast. The models were trained with 50,505 data entries from two buoys and eleven ADCPs. The machine learning models significantly improved the results from WW3 for three parameters: significant wave height, mean wave period, and mean wave direction. Our best performing model, which is based on a convolutional neural network and uses the directional wave spectrum as input, reduced root mean squared errors in the significant wave height by 71%, peak wave period by 61% and mean wave direction by 63%. Most importantly, our method dramatically improved the mean wave direction in four locations where WW3 was particularly problematic (absolute error reduction of 20 degrees). The neural network corrections can also be applied to other locations if sea states conditions are similar to the training data. The research presented here show that machine learning techniques are a fast and effective way to improve existing wave hindcast databases at relatively low cost.

Revista



Revista ISSN
Coastal Engineering 0378-3839

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Civil
Engineering, Ocean
Scopus
Ocean Engineering
Environmental Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Lucero, Felipe Hombre Marine Energy Res & Innovat Ctr - Chile
Marine Energy Research & Innovation Center (MERIC) - Chile
2 Stringari, Caio Eadi - France Energies Marines - Francia
BGC Engn Inc - Canadá
BGC Engineering Inc. - Canadá
BGC Engineering - Canadá
3 Filipot, Jean-Francois - France Energies Marines - Francia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
NLHPC
Centro de Investigación e Innovación en Energía Marina
MERIC-Marine Energy Research amp; Innovation Center

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This study was conducted under the partial support of MERIC-Marine Energy Research & amp; Innovation Center (14CEI2-28228) . Powered@NLHPC: This research was partially supported by the super-computing infrastructure of the NLHPC (ECM-02) .
This study was conducted under the partial support of MERIC - Marine Energy Research & Innovation Center (14CEI2-28228). Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Muestra la fuente de financiamiento declarada en la publicación.