Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Childhood obesity in Singapore: A Bayesian nonparametric approach
Indexado
WoS WOS:001068953300001
Scopus SCOPUS_ID:85171742493
DOI 10.1177/1471082X231185892
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Overweight and obesity in adults are known to be associated with increased risk of metabolic and cardiovascular diseases. Obesity has now reached epidemic proportions, increasingly affecting children. Therefore, it is important to understand if this condition persists from early life to childhood and if different patterns can be detected to inform intervention policies. Our motivating application is a study of temporal patterns of obesity in children from South Eastern Asia. Our main focus is on clustering obesity patterns after adjusting for the effect of baseline information. Specifically, we consider a joint model for height and weight over time. Measurements are taken every six months from birth. To allow for data-driven clustering of trajectories, we assume a vector autoregressive sampling model with a dependent logit stick-breaking prior. Simulation studies show good performance of the proposed model to capture overall growth patterns, as compared to other alternatives. We also fit the model to the motivating dataset, and discuss the results, in particular highlighting cluster differences. We have found four large clusters, corresponding to children sub-groups, though two of them are similar in terms of both height and weight at each time point. We provide interpretation of these clusters in terms of combinations of predictors.

Revista



Revista ISSN
Statistical Modelling 1471-082X

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Statistics & Probability
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Beraha, Mario Hombre Univ Torino - Italia
Università degli Studi di Torino - Italia
2 Guglielmi, Alessandra Mujer Politecn Milan - Italia
Politecnico di Milano - Italia
3 QUINTANA-OSORIO, FRANCISCO JAVIER Hombre Pontificia Universidad Católica de Chile - Chile
4 De Iorio, Maria - Natl Univ Singapore - Singapur
UCL - Reino Unido
ASTAR - Singapur
NUS Yong Loo Lin School of Medicine - Singapur
University College London - Reino Unido
A-Star, Singapore Institute for Clinical Sciences - Singapur
5 Eriksson, Johan Gunnar - Natl Univ Singapore - Singapur
NUS Yong Loo Lin School of Medicine - Singapur
6 Yap, Fabian - KK Womens & Childrens Hosp - Singapur
KK Women's and Children's Hospital - Singapur

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
European Research Council
European Research Council (ERC)
Horizon 2020 Framework Programme

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was partially funded by grants FONDECYT 1180034 and 1220017. Mario Beraha received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 817257
This work was partially funded by grants FONDECYT 1180034 and 1220017. Mario Beraha received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 817257.

Muestra la fuente de financiamiento declarada en la publicación.