Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00222-023-01217-1 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Building on work by Chabauty from 1941, Coleman proved in 1985 an explicit bound for the number of rational points of a curve C of genus g = 2 defined over a number field F, with Jacobian of rank at most g - 1. Namely, in the case F = Q, if p > 2g is a prime of good reduction, then the number of rational points of C is at most the number of F-p-points plus a contribution coming from the canonical class of C. We prove a result analogous to Coleman's bound in the case of a hyperbolic surface X over a number field, embedded in an abelian variety A of rank at most one, under suitable conditions on the reduction type at the auxiliary prime. This provides the first extension of Coleman's explicit bound beyond the case of curves. The main innovation in our approach is a new method to study the intersection of a p-adic analytic subgroup with a subvariety of A by means of overdetermined systems of differential equations in positive characteristic.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Caro, Jerson | - |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| 2 | Pasten, Hector | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Agencia Nacional de Investigación y Desarrollo |
| ANID Doctorado Nacional |
| ANID (ex CONICYT) FONDECYT Regular from Chile |
| Agradecimiento |
|---|
| J.C. was supported by ANID Doctorado Nacional 21190304 and H.P. was supported by ANID (ex CONICYT) FONDECYT Regular grant 1190442 from Chile. |
| J.C. was supported by ANID Doctorado Nacional 21190304 and H.P. was supported by ANID (ex CONICYT) FONDECYT Regular grant 1190442 from Chile. |