Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/LCSYS.2023.3278252 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This letter investigates the design of a class of infinite-dimensional observers for one dimensional (1D) boundary controlled port-Hamiltonian systems (BC-PHS) defined by differential operators of order N ≥ 1. The convergence of the proposed observer depends on the number and location of available boundary measurements. Asymptotic convergence is assured for N≥ 1, and provided that enough boundary measurements are available, exponential convergence can be assured for the cases N=1 and N=2. Furthermore, in the case of partitioned BC-PHS with N=2, such as the Euler-Bernoulli beam, it is shown that exponential convergence can be assured considering less available measurements. The Euler-Bernoulli beam model is used to illustrate the design of the proposed observers and to perform numerical simulations.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Toledo-Zucco, Jesus Pablo | Hombre |
ONERA Office National d'Etudes et Recherches Aerospatiales - Francia
Off Natl Etud & Rech Aerosp - Francia |
| 2 | Wu, Yongxin | - |
CNRS Centre National de la Recherche Scientifique - Francia
CNRS - Francia |
| 3 | RAMIREZ-ESTAY, HECTOR | Hombre |
Universidad Técnica Federico Santa María - Chile
|
| 4 | Le Gorrec, Yann | Hombre |
ONERA Office National d'Etudes et Recherches Aerospatiales - Francia
CNRS - Francia CNRS Centre National de la Recherche Scientifique - Francia |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agence Nationale de la Recherche (ANR) |
| EIPHI Graduate School |
| Agencia Nacional de Investigación y Desarrollo |
| EIPHI |
| ANID Basal Project |
| ANR IMPACTS project |
| Agradecimiento |
|---|
| This work was supported in part by the EIPHI Graduate School under Contract ANR-17-EURE-0002; in part by the ANR IMPACTS Project under Contract ANR-21-CE48-0018; in part by the ANID Basal Project under Grant FB0008; and in part by FONDECYT under Grant 1231896. |
| This work was supported in part by the EIPHI Graduate School under Contract ANR-17-EURE-0002; in part by the ANR IMPACTS Project under Contract ANR-21-CE48-0018; in part by the ANID Basal Project under Grant FB0008; and in part by FONDECYT under Grant 1231896. |