Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.EUROMECHFLU.2023.04.011 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Rip-currents, commonly observed on natural beaches, are vorticity induced and part of large scale near-shore circulations. The questions arise: how do bathymetric gradients magnitudes relate to rip velocities? how does rip current vorticity scale with wave characteristics and dissipation? What is the dynamics of the large scale 2D vorticity? To address these questions, we utilize a Non Linear Shallow Water model with a shock-capturing scheme. It is validated with preexisting experiments of wave induced rip-currents on uneven bathymetries generated by irregular waves. To do so the enstrophy (spatially averaged square of the vorticity) is shown to be a relevant metric to calibrate the bottom friction coefficient of the model. The numerical study based on a large number of simulations with monochromatic wave forcing shows that the more non-uniform the bathymetry is, the stronger the gradients in wave dissipation are and the stronger the enstrophy is. The rip current velocity is shown to linearly increase with the square root of the local enstrophy. The wave-averaged shallow water vorticity equation terms are evaluated. It is suggested that large scale 2D vorticity dynamics mainly result from an equilibrium between vorticity production, vorticity advection by the circulation and dissipation by bottom friction.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | SUAREZ-ATIAS, LEANDRO | Hombre |
Marine Energy Research and Innovation Center (MERIC) - Chile
Marine Energy Res & Innovat Ctr MERIC - Chile |
| 2 | CIENFUEGOS-CARRASCO, RODRIGO ALBERTO | Hombre |
Marine Energy Research and Innovation Center (MERIC) - Chile
Pontificia Universidad Católica de Chile - Chile Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile Marine Energy Res & Innovat Ctr MERIC - Chile |
| 3 | Michallet, H. | Hombre |
Universite Grenoble Alpes - Francia
Univ Grenoble Alpes - Francia |
| 4 | Barthelemy, Eric | Hombre |
Universite Grenoble Alpes - Francia
Univ Grenoble Alpes - Francia |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| CONICYT of Chile |
| Chile’s Marine Energy Research & Innovation Center |
| Chile's Marine Energy Research & Innovation Center |
| ANID/FONDAP |
| Centro de Investigación e Innovación en Energía Marina |
| project MODLIT (DGA-SHOM/INSU- RELIEFS) |
| Chile's Marine Energy Research amp; Innovation Center (MERIC) CORFO project |
| Agradecimiento |
|---|
| This work is supported by Chile’s Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228 . This study is partly funded by the project MODLIT ( DGA–SHOM/INSU–RELIEFS ). The first author would like to acknowledge for the support of CONICYT of Chile through PhD grant No. 21100415 . R. Cienfuegos acknowledges for the partial support from ANID/Fondap/1522A0005 program. |
| This work is supported by Chile’s Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228 . This study is partly funded by the project MODLIT ( DGA–SHOM/INSU–RELIEFS ). The first author would like to acknowledge for the support of CONICYT of Chile through PhD grant No. 21100415 . R. Cienfuegos acknowledges for the partial support from ANID/Fondap/1522A0005 program. |
| This work is supported by Chile's Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228. This study is partly funded by the project MODLIT (DGA-SHOM/INSU- RELIEFS) . The first author would like to acknowledge for the support of CONICYT of Chile through PhD grant No. 21100415. R. Cienfuegos acknowledges for the partial support from ANID/Fondap/1522A0005 program. |