Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



On Low-Resolution Face Re-identification with High-Resolution-Mapping
Indexado
WoS WOS:001423674400008
Scopus SCOPUS_ID:85161367890
DOI 10.1007/978-3-031-26431-3_8
Año 2023
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Low-resolution face re-identification refers to the problem of identifying if the same person’s face appears in two images: one image is low resolution (LR), e.g., from a surveillance camera, and the another one is high resolution (HR), e.g., from a government-issued identification. Research in low-resolution face re-identification has been increasing in the past few years. It can be divided into three categories: i) methods upscaling the LR image to the HR space (HR-mapping), ii) methods employing LR and HR robust features, and iii) methods learning a unified space representation. In this work, we focus on face re-identification using HR-mapping because it yields better results. Our main contribution is an experimental protocol that can be used as guideline in this task. In research, protocols are often neglected and researchers that utilize previous work on their projects have to allocate a significant amount of time to replicating inadequately described methods. We use our experimental protocol as a guideline to create a set of training and testing pairs for face re-identification using dataset VGG-Face-2. In addition, we conducted 18 experiments to validate the experimental protocol. In our experiments, we measured “d-prime” (d′ ) and the area under the ROC curve (Az ). We obtained: d′= 1.236 and Az= 0.81 for a 14 × 14 LR pixel size set, d′= 1.900 and Az= 0.91 for a 28 × 28 LR pixel size set and d′= 2.787 and Az= 0.97 for a 56 × 56 LR pixel size set. We believe that our protocol can be very helpful for researchers in the field because it can be used as a set of guidelines for building comparable and replicable work of their own.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Computer Science (All)
Theoretical Computer Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Prieto, Loreto Hombre Pontificia Universidad Católica de Chile - Chile
2 Pulgar, Sebastian Hombre Pontificia Universidad Católica de Chile - Chile
3 Flynn, Patrick Hombre University of Notre Dame - Estados Unidos
College of Engineering - Estados Unidos
UNIV NOTRE DAME - Estados Unidos
4 MERY-QUIROZ, DOMINGO Hombre Pontificia Universidad Católica de Chile - Chile
5 Wang, H -
6 Lin, W -
7 Manoranjan, P -
8 Xiao, G -
9 Chan, KL -
10 Wang X -
11 Ping, G -
12 Jiang, H -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Center for Artificial Intelligence CENIA

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Acknowledgments. This work was supported by National Center for Artificial Intelligence CENIA FB210017, Basal ANID.
This work was supported by National Center for Artificial Intelligence CENIA FB210017, Basal ANID.

Muestra la fuente de financiamiento declarada en la publicación.